Impact of Hot Carrier Degradation and Positive Bias Temperature Stress on Lateral 4H-SiC nMOSFETs


Article Preview

We study the impact of positive bias temperature stress and hot carrier stress on lateral 4H-SiC nMOSFETs. These degradation mechanisms are prominent in silicon based devices where both create oxide as well as interface traps. For SiC MOSFETs only limited information regarding these mechanisms is available. We transfer the charge pumping technique, known from Si MOSFETs, reliably to SiC MOSFETs to learn about the nature of the stress induced defects.



Materials Science Forum (Volumes 778-780)

Edited by:

Hajime Okumura, Hiroshi Harima, Prof. Tsunenobu Kimoto, Masahiro Yoshimoto, Heiji Watanabe, Tomoaki Hatayama, Hideharu Matsuura, Tsuyoshi Funaki and Yasuhisa Sano




G. Pobegen et al., "Impact of Hot Carrier Degradation and Positive Bias Temperature Stress on Lateral 4H-SiC nMOSFETs", Materials Science Forum, Vols. 778-780, pp. 959-962, 2014

Online since:

February 2014




* - Corresponding Author

[1] T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P. -J. Wagner, F. Schanovsky, J. Franco, M. Toledano Luque, and M. Nelhiebel, ``The paradigm shift in understanding the bias temperature instability: From reaction-diffusion to switching oxide traps, IEEE Transactions on Electron Devices, vol. 58, no. 11, pp.3652-3666, Nov. (2011).


[2] A. Bravaix and V. Huard, ``Hot-carrier degradation issues in CMOS nodes, in European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Oct. 2010, tutorial.

[3] E. Bano, C. Banc, T. Ouisse, and S. Scharnholz, ``Hot carrier-induced photon emission in 6H and 4H-SiC MOSFETs, Solid-State Electronics, vol. 44, no. 1, pp.63-69, (2000).


[4] A. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, and N. Goldsman, ``Time dependence of bias-stress-induced SiC MOSFET threshold-voltage instability measurements, IEEE Transactions on Electron Devices, vol. 55, no. 8, pp.1835-1840, Aug. (2008).


[5] T. Aichinger, P. M. Lenahan, and D. Peters, ``Interface defects and negative bias temperature instabilities in 4H-SiC pMOSFETs - a combined DCIV/SDR study, Materials Science Forum, vol. 740-742, pp.526-532, (2013).


[6] G. Groeseneken, H. Maes, N. Beltran, and R. De Keersmaecker, ``A reliable approach to chargepumping measurements in MOS transistors, IEEE Transactions on Electron Devices, vol. 31, no. 1, pp.42-53, (1984).


[7] D. Okamoto, H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki, ``Analysis of anomalous chargepumping characteristics on 4H-SiC MOSFETs, IEEE Transactions on Electron Devices, vol. 55, no. 8, pp.2013-2020, Aug. (2008).


[8] K. Vassilevski, K. Zekentes, A. Zorenko, and L. Romanov, ``Experimental determination of electron drift velocity in 4H-SiC p+/n/n+ avalanche diodes, IEEE Electron Device Letters, vol. 21, no. 10, pp.485-487, (2000).


[9] T. Rudenko, I. Osiyuk, I. Tyagulski, H. Ólafsson, and E. Sveinbjörnsson, ``Interface trap properties of thermally oxidized n-type 4H-SiC and 6H-SiC, Solid-State Electronics, vol. 49, no. 4, pp.545-553, (2005).


[10] P. Friedrichs, E. P. Burte, and R. Schörner, ``Interface properties of metal-oxide-semiconductor structures on n-type 6H and 4H-SiC, Journal of Applied Physics, vol. 79, no. 10, pp.7814-7819, (1996).


[11] K. McDonald, R. Weller, S. Pantelides, L. Feldman, G. Chung, C. C Tin, and J. Williams, ``Characterization and modeling of the nitrogen passivation of interface traps in SiO2/4H-SiC, Journal of Applied Physics, vol. 93, no. 5, pp.2719-2722, (2003).


[12] C. Naulin, M. Costes, Z. Moudden, N. Ghanem, and G. Dorthe, ``The dissociation energy of the SiN radical determined from a crossed molecular beam study of the Si+N2O->SiN+NO reaction, Chemical Physics Letters, vol. 202, no. 5, pp.452-458, (1993).


[13] V. Huard, M. Denais, and C. Parthasarathy, ``NBTI degradation: From physical mechanisms to modelling, Microelectronics Reliability, vol. 46, no. 1, pp.1-23, (2006).