Effective Fluorine Treatment for Improved High Temperature Oxidation Behavior of Novel Cu, Mo and Si Containing TiAl-Alloys


Article Preview

Intermetallic light weight TiAl-alloys are expected to replace the heavy Ni-based super alloys in several high temperature applications. However until now they cannot be used at temperatures above 700°C for longer times due to their insufficient oxidation resistance. The high temperature oxidation behavior can be improved drastically for the use at temperatures up to at least 1050°C by small amounts of fluorine in the surface region of TiAl-components. A thin protective alumina layer is formed after an optimized fluorine treatment during exposure in oxidizing high temperature environments. Results of isothermal and thermocyclic high temperature oxidation tests of untreated and halogen treated TiAl-samples of new types of TiAl-alloys containing Mo, Cu and Si will be presented in this paper. These results will be compared and discussed considering the beneficial effect of fluorine for a later use as e.g. turbine blades in jet engines. Key words: Titanium aluminides, high temperature oxidation, halogen effect,



Materials Science Forum (Volumes 783-786)

Main Theme:

Edited by:

B. Mishra, M. Ionescu and T. Chandra




A. Donchev et al., "Effective Fluorine Treatment for Improved High Temperature Oxidation Behavior of Novel Cu, Mo and Si Containing TiAl-Alloys", Materials Science Forum, Vols. 783-786, pp. 1117-1122, 2014

Online since:

May 2014




* - Corresponding Author

[1] G. Sauthoff; Zeitschr. f. Metallk. 80 (1989) 337.

[2] G. Sauthoff; Zeitschr. f. Metallk. 77 (1986) 654.

[3] J.C. Schuster, M. Palm; J. Phase Equil. Diff. 27 (2006) 255.

[4] E.A. Loria, Intermetallics 8 (2000) 1339.

[5] D.M. Dimiduk, D.B. Miracle, C.H. Ward; Mat. Science Techn. 8 (1992) 367.

[6] A. Rahmel, W.J. Quadakkers, M. Schütze; Mat. Corros. 46 (1995) 271.

[7] C. Lang, M. Schütze; Mat. Corros. 48 (1997) 13.

[8] S. Taniguchi; Mat. Corros. 48 (1997) 1.

[9] M. Kumagai, K. Shibue, M . Kim, M. Yonemitsu; Intermetallics 4 (1996) 557.

[10] M. Schütze, M. Hald; Mat. Sci. Eng. A239-240 (1997) 847.

[11] G. Schumacher, F. Dettenwanger, M. Schütze; Mat. High Temp. 17 (2000) 53.

[12] G. Schumacher, F. Dettenwanger, M. Schütze, U. Hornauer, E. Richter, E. Wieser, W. Möller; Intermetallics 7 (1999) 1113.

DOI: https://doi.org/10.1016/s0966-9795(99)00032-1

[13] A. Donchev, R. Yankov, A. Kolitsch, M. Schütze; Intermetallics 14 (2006) 1164.

[14] JF Ziegler, J. Biersack, U. Littmark; The Stopping and Range of Ions in Matter,. Pergamon Press (1985).

[15] A. Donchev, B. Gleeson, M. Schütze; Intermetallics 11 (2003) 387.

[16] H. Hindam, D.P. Whittle; Ox. Met. 18 (1982) 245.

[17] P. Kofstad; High Temperature Corrosion, Elsevier, London, New York (1988).

[18] G.H. Meier, D. Appalonia, R.A. Perkins, K.T. Chiang; Oxidation of High Temperature Intermetallics, eds. T. Grobstein, J. Doychak, TMS (1989) 185.

[19] Y. Shida, H. Anada; Mater. Trans. JIM 35 (1994) 623.

[20] Y. Shida, H. Anada; Ox. Met. 45 (1996) 197.