Radiographic and Tomographic Neutron Bragg Imaging for Quantitative Visualization of Wide Area Crystalline Structural Information


Article Preview

Recent status of the technical development of the Bragg-edge neutron transmission imaging and its application to material science is presented. The neutron Bragg imaging has the advantages in measuring large area with reasonable spatial resolution, and it is a non-destructive method capable of looking inside a bulk material. Therefore, various information that are quite different from EBSD, synchrotron microtomography and X-ray/neutron scattering can be obtained by this method. We carried out quantitative imaging to obtain crystalline microstructural information in ultralow-carbon steels that received the high pressure torsion (HPT). The real-space distributions of texture and grain/crystallite size of HPTed steels of four torsion numbers were quantitatively visualized at once. As a result, we could deduce unique distributions of microstructural information depending on each torsion number, and correlated them with real-space distributions of the Vickers hardness. We also successfully developed a versatile strain tomography technique that can obtain tensor values for strain although traditional CT techniques can deal with only scalar values. The new CT algorithm, the tensor CT method, is based on our original algorithm called FBP-EM. The strain tensor tomography using FBP-EM was successfully applied for the experimental measured result obtained with the VAMAS neutron strain analysis international standard sample.



Materials Science Forum (Volumes 783-786)

Main Theme:

Edited by:

B. Mishra, M. Ionescu and T. Chandra




H. Sato et al., "Radiographic and Tomographic Neutron Bragg Imaging for Quantitative Visualization of Wide Area Crystalline Structural Information", Materials Science Forum, Vols. 783-786, pp. 2109-2114, 2014

Online since:

May 2014




* - Corresponding Author

[1] H. Sato, T. Kamiyama and Y. Kiyanagi, Mater. Trans. 52 (2011) 1294-1302.

[2] Y. Kiyanagi, H. Sato, T. Kamiyama and T. Shinohara, J. Phys. Conf. Ser. 340 (2012) 012010.

[3] H. Sato, T. Kamiyama, K. Iwase, T. Ishigaki and Y. Kiyanagi, Nucl. Instrum. Methods A 651 (2011) 216-220.

[4] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103-189.

[5] Y. Todaka, M. Umemoto, A. Yamazaki, J. Sasaki and K. Tsuchiya, Mater. Trans. 49 (2008) 7-14.

[6] M. Hashimoto and Y. Todaka, Private communication (27th February 2012).

[7] F. Maekawa, K. Oikawa, M. Harada, T. Kai, S. Meigo, Y. Kasugai, M. Ooi, K. Sakai, M. Teshigawara, S. Hasegawa, Y. Ikeda and N. Watanabe, Nucl. Instrum. Methods A 600 (2009) 335-337.


[8] H. Sato, O. Takada, S. Satoh, T. Kamiyama and Y. Kiyanagi, Nucl. Instrum. Methods A 623 (2010) 597-599.

[9] B. Abbey, S. Y. Zhang, W. Vorster and A. M. Korsunsky, Nucl. Instrum. Methods B 270 (2012) 28-35.

[10] G. A. Webster, Neutron Diffraction Measurements of Residual Stress in a Shrink-fit Ring and Plug, VAMAS Report No. 38 (2000) ISSN 1016-2186.

[11] S. Uno, T. Uchida, M. Sekimoto, T. Murakami, K. Miyama, M. Shoji, E. Nakano and T. Koike, Phys. Proc. 37 (2012) 600-605.


[12] Y. Kiyanagi, T. Shinohara, T. Kai, T. Kamiyama, H. Sato, K. Kino, K. Aizawa, M. Arai, M. Harada, K. Sakai, K. Oikawa, M. Ooi, F. Maekawa, H. Iikura, T. Sakai, M. Matsubayashi, M. Segawa and M. Kureta, Phys. Proc. 43 (2013) 92-99.


Fetching data from Crossref.
This may take some time to load.