Structural and Optical Properties of ZnO1-xSx Thin Films Grown by Pulse Laser Deposition on Glass Substrates


Article Preview

With a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, ZnO is attractive for blue and ultra-violet optoelectronic devices, and transparent conducting oxide films for photovoltaic applications. For a semiconductor to be useful, particularly in reference to optoelectronic devices, band gap engineering is of great importance in device development. Alloying of MgO and CdO with ZnO has been studied extensively in comparison to other ZnO alloys incorporating equivalent anions like ZnO1-xSx (ZnOS). In this work, high-quality ZnOS thin films were grown on glass substrates by pulsed laser deposition using a ZnS ceramic target with varying O2 partial pressures between 0 and 6 Pa. ZnOS alloys with a wurtzite structure were achieved and no evident phase separation was observed in the whole composition range as determined by X-ray diffraction. The optical transmission measurements show that the average transmittance in the visible range of the films is about 80%. The absorption edges of the films first shift towards low-energy side with increasing the oxygen partial pressure and then blueshift when the oxygen partial pressure is over 2 Pa. The bandgap energies of the ZnOS films were calculated to change from 3.06 to 3.72 eV, showing a nonlinear variation with a bowing behavior that was previously reported.



Edited by:

Yafang Han, Ying Wu and Xinqing Zhao




L. Zhang et al., "Structural and Optical Properties of ZnO1-xSx Thin Films Grown by Pulse Laser Deposition on Glass Substrates", Materials Science Forum, Vol. 787, pp. 18-22, 2014

Online since:

April 2014




* - Corresponding Author

[1] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(2005) 041301.


[2] B. Laumer, T.A. Wassner, F. Schuster, M. Stutzmann, J. Schormann, M. Rohnke, A. Chernikov, V. Bornwasser, M. Koch, S. Chatterjee, M. Eickhoff, J. Appl. Phys. 110(2011) 093513.


[3] L. Dong, S.P. Alpay, J. Appl. Phys. 111(2012) 113714.

[4] H. Matsui, H. Tabata, In-plane light polarization in nonpolar m-plane CdxZn1−xO/ZnO quantum wells, Appl. Phys. Lett. 98(2011) 261902.


[5] T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, Appl. Phys. Lett. 77(2000) 1632-1634.


[6] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. Braunig, Solar Energy Mater. Solar Cells 67(2001) 159-166.


[7] R. Scheer, Prog. Photovolt. Res. Appl. 20(2012) 507-511.

[8] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 72(1998) 2466-2468.


[9] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, Appl. Phys. Lett. 78(2001) 1237-1239.


[10] W.F. Yang, B. Liu, R. Chen, L.M. Wong, S.J. Wang, H.D. Sun, Appl. Phys. Lett. 97(2010) 061911.

[11] Y.Z. Yoo, Z.W. Jin, T. Chikyow, T. Fukumura, M. Kawasaki, H. Koinuma, Appl. Phys. Lett. 81(2002) 3798-3800.

[12] B.K. Meyer, A. Polity, B. Farangis, Y.B. He, D. Hasselkamp, T. Krämer, C. Wang, Appl. Phys. Lett. 85(2004) 4929-4931.

[13] H.L. Pan, T. Yang, B. Yao, R. Deng, R.Y. Sui, L.L. Gao, D.Z. Shen, Appl. Surf. Sci. 256(2010) 4621-4625.

[14] Y.B. He, L.H. Wang, L. Zhang, M.K. Li, X.Z. Shang, Y.Y. Fang, C.Q. Chen, J. Alloys Compd. 534(2012) 81-85.

[15] C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Phys. Rev. Lett. 97(2006) 146403.