Photocatalytic Activity of Ce-Doped Hematite for Hydrogen Production


Article Preview

Hematite is one of the most promising photoanodes for water splitting, but its photoelectrochemical (PEC) efficiency is still low. This work proved that the PEC efficiency of hematite can be improved by Ce doping. The Ce doped hematite was successfully prepared by co-sputtering CeO2 and Fe2O3, and followed by thermal oxidation treatment. The results of J-V test showed that the photocurrent of 5 at.% Ce doped α-Fe2O3 film can reached 1.35mA/cm2 in 1 M NaOH (pH=13.6) at 1.23V vs. NHE, which is nearly 15 times higher than the undoped one. The enhancement of PEC efficiency was proved by the enhancement of absorbance of visible light, as well as increased carrier density after Ce doping.



Edited by:

Yafang Han, Ying Wu and Xinqing Zhao




J. J. Cai et al., "Photocatalytic Activity of Ce-Doped Hematite for Hydrogen Production", Materials Science Forum, Vol. 787, pp. 46-51, 2014

Online since:

April 2014




* - Corresponding Author

[1] D. Voiry, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, C. Dunnill, J. Buckeridge, Nature Material, 12 (2013) 850-855.


[2] P. Zeng, Q. Zhang, X. Zhang, T. Peng, Journal of Alloys and Compounds, 516 (2012) 85-90.

[3] T. Yang, H. Wang, X.M. Ou, C.S. Lee, X.H. Zhang, Advanced Materials, 24 (2012) 6199-6203.

[4] Y. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, K. Domen, Advanced Materials, 25 (2013) 125-131.


[5] P. Wang, D. Wang, J. Lin, X. Li, C. Peng, X. Gao, Q. Huang, J. Wang, H. Xu, C. Fan, ACS Applied Materials & Interfaces, 4 (2012) 2295-2302.

[6] P. Kumar, P. Sharma, R. Shrivastav, S. Dass, V.R. Satsangi, International Journal of Hydrogen Energy, 36 (2011) 2777-2784.

[7] K. Sivula, M. Gratzel, ChemSusChem, 4 (2011) 432-449.

[8] J. Cai, S. Li, Z. Li, J. Wang, Y. Ren, G. Qin, Journal of Alloys and Compounds, 574 (2013) 421-426.

[9] J.S. Xu, Y.J. Zhu, CrystEngComm, 14 (2012) 2702-2710.

[10] Y. Lin, Y. Xu, M.T. Mayer, Z.I. Simpson, G. McMahon, S. Zhou, D. Wang, Journal of the American Chemical Society, 134 (2012) 5508-5511.

[11] J. Li, F. Meng, S. Suri, W. Ding, F. Huang, N. Wu, Chemical Communications, 48 (2012) 8213-8215.

[12] J.A. Glasscock, I.C. Plumb, N. Savvides, 111 (2007) 16477-16488.

[13] H. Magnan, D. Stanescu, M. Rioult, E. Fonda, A. Barbier, Applied Physics Letters, 101 (2012) 133908.


[14] Y. Ling, D.A. Wheeler, J. Zhang, Y. Li, Nano Letters, 11 (2011) 2119-2125.

[15] C. Karunakaran, R. Dhanalakshmi, 92 (2008) 1315-1321.

[16] J. Qi, J. Chen, G. Li, S. Li, Y. Gao, Z. Tang, Energy & Environmental Science, 5 (2012) 8937-8941.

[17] X. Yang, X. Lian, J. Tian, C. Jiang, G. Wang, J. Chen and R. Wang, International Journal of Electrochemical Science, 8 (2013) 3721-3730.

[18] B. Yang, G. Qin, W. Pei, S. Li, Y. Ren, S. Ishio, Journal of Materials Science & Technology, 27 (2011) 398-402.

[19] T.K. Van, H.G. Cha, C.K. Nguyen, S.W. Kim, M.H. Jung, Y.S. Kang, Crystal Growth & Design, 12 (2012) 862-868.

[20] Y. Liu, Y.X. Yu, W.D. Zhang, Electrochimica Acta, 59 (2012) 121-127.

[21] S. Yang, D. Prendergast, J.B. Neaton, Nano Letters, 12 (2012) 383-388.