Evaluation of (Al)-Si Eutectic Reference Temperature of A3xx Alloys

Abstract:

Article Preview

The modification level of Al-Si alloys is generally evaluated by the depression of the (Al)-Si eutectic temperature which can be recorded by thermal analysis. However, this method requires a reference temperature which should be the eutectic temperature evaluated on the relevant phase diagram. Various methods proposed to account for the effect of low level alloying elements on this reference temperature are reviewed and emphasis is put on the so-called Mondolfo's equation which is updated. Predictions are compared to experimental information from literature.

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Edited by:

A. Roósz and K. Tomolya

Pages:

367-372

Citation:

D. Ferdian and J. Lacaze, "Evaluation of (Al)-Si Eutectic Reference Temperature of A3xx Alloys", Materials Science Forum, Vols. 790-791, pp. 367-372, 2014

Online since:

May 2014

Export:

Price:

$41.00

* - Corresponding Author

[1] B.L. Tuttle, Principle of thermal analysis for molten metal process control, Proc. AFS/CMI Conf., Rosemont, IL, USA (1984) 1-37.

[2] D. Apelian, G.K. Sigworth, K.R. Whaler, Assessment of grain refinement and modification of Al-Si foundry alloys by thermal analysis, AFS Trans. 92 (1984) 297-307.

[3] J.E. Gruzleski, B.M. Closset, The treatment of liquid aluminum-silicon alloys, AFS Inc., Des Plaines, Illinois, (1990).

[4] L.F. Mondolfo, Aluminum alloys: structure and properties, Butterworth, London, (1976).

[5] R.Y. Wang, W. Lu, Spheroidization of eutectic silicon in direct-electrolytic Al-Si Alloy, Metall. Mater. Trans. A, 44 (2013) 2799-2809.

DOI: https://doi.org/10.1007/s11661-012-1603-9

[6] H.W.L. Phillips, Annotated equilibrium diagrams of some aluminium alloy systems, Monograph No. 25, Inst. Met., London, (1959).

[7] Y. Du, Z. Jin, B. Huang, W. Gong, H. Xu, Z. Yuan, J.C. Schuster, F. Weitzer and N. Krendelsberger, A thermodynamic description of the Al-Mn-Si system over the entire composition and temperature ranges, Metall. Mater. Trans. A. 35 (2004) 1613-1628.

DOI: https://doi.org/10.1007/s11661-004-0267-5

[8] C.Y. He, Y. Du, H.L. Chen, and H. Xu, Experimental investigation and thermodynamic modeling of the Al–Cu–Si system, CALPHAD 33 (2009) 200-210.

DOI: https://doi.org/10.1016/j.calphad.2008.07.015

[9] K. Suzuki, M. Kagayama, Y. Takeuchi, Eutectic phase equilibrium of Al-Si-Zn system and its applicability for lower temperature brazing, J. Jpn. Inst. Light Met. 43 (1993) 533-538. (in Japanese).

DOI: https://doi.org/10.2464/jilm.43.533

[10] M.H.G. Jacob and P.J. Spencer, A critical thermodynamic evaluation of the systems Si-Zn and Al-Si-Zn, CALPHAD 20 (1996) 307-320.

DOI: https://doi.org/10.1016/s0364-5916(96)00033-8

[11] A.T. Joenoes and J.E. Gruzleski, Magnesium effects on the microstructure of unmodified and modified Al-Si alloys, Cast met. 4 (1991) 62-72.

DOI: https://doi.org/10.1080/09534962.1991.11819058

[12] G. Stuhldreier, E. Mettingen, K.W. Stoffregen, Erfahrungen mit thermischen analyse von G-AlSi-legierungen, Giesserei. 68 (1981) 404-409.

[13] F.C. Robles Hernandez, M.B. Djurdjevic, W.T. Kierkus, J.H. Sokolowski, Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys, Mater. Sci. Eng., A. 396 (2005) 271–276.

DOI: https://doi.org/10.1016/j.msea.2005.01.024

[14] M.B. Djurdjevic, Thermal description of hypoeutectic Al-Si-Cu alloys using silicon equivalency, Military Technical Courier. 60 (2012) 152-168.

DOI: https://doi.org/10.5937/vojtehg1201152d

[15] J. Charbonnier, Microprocessor assisted thermal analysis testing of aluminum alloy structure, AFS Trans. 92 (1984) 907-921.

[16] S. Gowri, F.H. Samuel, Effect of alloying elements on the solidification characteristics and microstructure of Al-Si-Cu-Mg-Fe 380 alloy, Metall. Mater. Trans. A, 25A (1994) 437-448.

DOI: https://doi.org/10.1007/bf02647989

[17] M.B. Djurdjevic, H. Jiang, J. Sokolowski, Online prediction of aluminum-silicon eutectic modification level using thermal analysis, Mater. Charact., 46 (2001) 31-38.

DOI: https://doi.org/10.1016/s1044-5803(00)00090-5

[18] S. Thompson, S.L. Cockroft, M.A. Wells, Advance light metals casting development: solidification of aluminum alloy A356, Mater. Sci. Technol. 20 (2004) 194-200.

[19] M.B. Djurdjevic, G. Huber, Z. Odanovic, Synergy between thermal analysis and simulation, J. Therm. Anal. Calorim. 111 (2013) 1365-1373.

DOI: https://doi.org/10.1007/s10973-012-2389-0

[20] S. Farahany, A. Ourdjini, M.H. Idrsi, S.G. Shabestari, Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in Al-Si-Cu alloy (ADC12) by in situ thermal analysis, Thermochim. Acta, 2013, vol. 553, pp.59-68.

DOI: https://doi.org/10.1016/j.tca.2013.02.024

[21] Y.M. Han, A.M. Samuel, F.H. Samuel, H.W. Doty, Microstructure characteristics in non-modified and Sr modified Al–Si–Cu–Mg 319 type alloys, Int. J. Cast Met. Res, 2008, vol. 21, pp.371-380.

DOI: https://doi.org/10.1179/136404608x343639

[22] S. Thompson, S.L. Cockroft, M.A. Wells, Advanced light metals casting development: solidification of aluminium alloy A356, Mater. Sci. Technol., 2004, vol. 20, pp.194-200.

DOI: https://doi.org/10.1179/026708304225011199

[23] S.D. McDonald, A.K. Dahle, J.A. Taylor, D.H. StJohn, Eutectic grains in unmodified and strontium-modified hypoeutectic aluminum-silicon alloys, Metall. Mater. Trans. A, 2004, Vol. 35A, pp.1829-1873.

DOI: https://doi.org/10.1007/s11661-004-0091-y

[24] M.B. Djurdjevic, G. Huber, Z. Odanovic, Synergy between thermal analysis and simulation, J. Therm. Anal. Calorim., 2013, vol. 111, pp.1365-1373.

DOI: https://doi.org/10.1007/s10973-012-2389-0

[25] M.B. Djurdjevic, Z. Odanovic, N. Talijan, Characterization of the solidification path of AlSi5Cu(1–4 wt. %) alloys using cooling curve analysis, JOM, 2011, vol. 63, pp.1-7.

DOI: https://doi.org/10.1007/s11837-011-0191-2

[26] Thermo-Calc Software, TCAL1 database version 1. 0, http: /www. thermocalc. com (Accessed 29 March 2013).