A Positron Study of Early Clustering in Al-Mg-Si Alloys


Article Preview

Early stages of clustering in quenched Al-Mg-Si alloys during natural ageing were studied by positron annihilation lifetime spectroscopy utilizing its unique sensitivity to electron density differences in various atomic defects. Two different positron trapping sites could be identified, one related to a vacancy-type defect, the other to solute clusters. The first trap is deep, i.e. irreversibly traps positrons, the second shallow, from which positrons can escape, which creates the signature of a temperature-dependent positron lifetime. During the first 80 min of NA, the vacancy-related contribution decreases, while the solute clusters increasingly trap positrons, thus reflecting their continuous growth and power to trap positrons. Coincident Doppler broadening spectroscopy of the annihilation radiation shows that the annihilation sites are Si-rich after quenching but contain more Mg after 70 min.



Materials Science Forum (Volumes 794-796)

Edited by:

Knut Marthinsen, Bjørn Holmedal and Yanjun Li




M. Liu et al., "A Positron Study of Early Clustering in Al-Mg-Si Alloys", Materials Science Forum, Vols. 794-796, pp. 33-38, 2014

Online since:

June 2014




* - Corresponding Author

[1] J. Banhart, M.D.H. Lay, C.S.T. Chang, A.J. Hill, Phys. Rev. B 83 (2011) 014101.

[2] M. Liu, Y. Yan, Z. Liang, C.S.T. Chang, J. Banhart, Proceedings of ICAA-13, Eds.: H. Weiland, A.D. Rollett, W.A. Cassada, TMS and Wiley, (2012) 1131-1137.

[3] F. Bečvář, J. Čížek, I. Procházka, J. Janotová, Nucl. Instrum. Methods A 539 (2005) 372-385.

[4] R. Krause-Rehberg, Positron Annihilation in Semi-Conductors, Springer, (2003).

[5] M. Liu, PhD thesis, Technische Universität Berlin, Berlin, (2014).

[6] B. Klobes, PhD thesis, University of Bonn (2010) 101.

[7] B. Pagh, H.E. Hansen, B. Nielsen, G. Trumpy, K. Petersen, Appl. Phys. A 33 (1984) 255-263.

[8] C. Corbel, R.P. Gupta, J. Phys. Lett. 42 (1981) 549.

[9] O. Melikhová, J. Kuriplach, J. Čížek, I. Procházka, Appl. Surf. Sci. 252 (2006) 3288.

[10] P. Lang, E.P. Karadeniz, W. Mayer, A. Falahati, E. Kozeschnik, Proceedings of PRICM-8, Eds.: F. Marquis, TMS, (2013) 3181-3188.

[11] S. Hirosawa, F. Nakamura, T. Sato, Mater. Sci. Forum 283 (2007) 561-565.

[12] W.M. Lomer, Monograph Rept. Ser. Vol. 23, The Institute of Metals London, (1958) 79.

[13] R.M. Nieminen, Positron Spectroscopy of Solids, IOS, 1995, pp.443-489.

[14] M.J. Puska, R.M. Nieminen, J. Phys. 1 (1989) 6091.

[15] J.W. Martin, Micromechanisms in Particle-hardened Alloys, Cambridge University Press, 1980, pp.26-40.

[16] J. Banhart, M. Liu, Y. Yan, Z. Liang, C.S.T. Chang, M. Elsayed, M.D.H. Lay, Phys. B 407 (2012) 2689.