A Review on PEO Based Solid Polymer Electrolytes (SPEs) Complexed with LiX (X=Tf, BOB) for Rechargeable Lithium Ion Batteries

Abstract:

Article Preview

Nanocomposite polymer electrolytes (NCPEs) have been playing a considerable role in the development of alternative clean and sustainable energy technologies. This review article summarizes the recent research progress on the synthesis and characterization of NCPEs and its application in lithium ion battery based energy storage devices. First, an introduction on the properties, synthesis strategies and use of NCPEs is briefly given, followed by a state-of-the-art review on the preparation of NCPEs and their electrochemical properties in lithium ion battery (LIB) applications. Finally, the prospects and future challenges of NCPEs for energy storage are discussed

Info:

Periodical:

Edited by:

Alagarsamy Pandikumar, Huang Nay Ming and Lim Hong Ngee

Pages:

41-63

Citation:

K. Karuppasamy et al., "A Review on PEO Based Solid Polymer Electrolytes (SPEs) Complexed with LiX (X=Tf, BOB) for Rechargeable Lithium Ion Batteries", Materials Science Forum, Vol. 807, pp. 41-63, 2015

Online since:

November 2014

Export:

Price:

$38.00

* - Corresponding Author

[1] NS. Choi, YS. Lee, JK. Park, JM. Ko, New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries, Electrochim. Acta, 46 (2001) 1453-1459.

DOI: https://doi.org/10.1016/s0013-4686(00)00739-8

[2] MB. Armand, Polymer solid electrolytes - an overview, Solid State Ionics, 9 (1983) 745-754.

DOI: https://doi.org/10.1016/0167-2738(83)90083-8

[3] S. Chao, MS. Wringhton, Solid-state micro electrochemistry: electrical characteristics of a solid-state microelectrochemical transistor based on poly(3-methylthiophene)', J. Am. Chem. Soc. 109 (1992) 2197-2199.

DOI: https://doi.org/10.1021/ja00241a057

[4] DE. Fenton, JM. Parker, PV. Wright, Complexes of alkali metal ions with poly(ethylene oxide) Polymer, 14 (1973) 589-589.

DOI: https://doi.org/10.1016/0032-3861(73)90146-8

[5] JR. MacCallum, C. Vincent, Polymer Electrolyte Reviews, 1-2 (1987), Springer, London.

[6] MB. Armand, Polymer Electrolytes, Ann. Rev. Mater. Res. 43 (1986) 503-525.

[7] MB. Armand, JM. Chabagno, MJ. Duclot, Fast ion transport in solids, P. Vashishta, JN. Mundy and GK. Shenoy, 1989, North Holland, Amsterdam.

[8] B. Scrosati, O. Yamamoto, International conference on application of conducting polymers, Book of Abstracts, 1997, Rome.

[9] B. Scrosati, Proceedings of the Second International Symposium on Polymer Electrolytes, 1990, Elsevier, London.

[10] B. Scrosati, Applications of Electroactive Polymers, 1993, Chapman and Hall, London.

[11] BVR. Chowdary, Proceedings of the 10th International Conference on Solid State Ionics, Singapore, Solid State Ionics, 1 (1996) 86-89.

[12] C. Berthier, W. Gorecki, M. Minier, MB. Armand, JM. Chabagno, P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts, Solid State Ionics, 11 (1983) 91-95.

DOI: https://doi.org/10.1016/0167-2738(83)90068-1

[13] DE. Fenton, JM. Parker, PV. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer, 14 (1973) 589-589.

DOI: https://doi.org/10.1016/0032-3861(73)90146-8

[14] E. Quartarone, P. Mustarelli, A. Magistris, PEO-Based Composite Polymer Electrolytes, Solid State Ionics, 110 (1998) 1-14.

DOI: https://doi.org/10.1016/s0167-2738(98)00114-3

[15] FB. Dias, L. Plomp, JBJ. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries, J. Power Sources, 88 (2000) 169-191.

DOI: https://doi.org/10.1016/s0378-7753(99)00529-7

[16] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303-4417.

DOI: https://doi.org/10.1021/cr030203g

[17] DR. Sadoway, Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries, J. Power Sources, 129 (2004) 1-3.

DOI: https://doi.org/10.1016/j.jpowsour.2003.11.016

[18] DR. Sadoway, B. Huang, BE. Trapa, PP. Soo, P. Bannerjee, AM. Mayes, Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries, J. Power Sources, 97-98 (2001) 621-623.

DOI: https://doi.org/10.1016/s0378-7753(01)00642-5

[19] FM. Gray, Polymer electrolytes, 1997, RSC Material Monographs, London.

[20] JW. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195 (2010) 4554-4569.

DOI: https://doi.org/10.1016/j.jpowsour.2010.01.076

[21] S. Ahmad, Polymer electrolytes: characteristics and peculiarities, Ionics, 15 (2009) 309-321.

[22] M. Ciosek, Ion transport phenomena in polymeric electrolytes, Electrochim. Acta, 53 (2007) 1409-1416.

[23] B. Scrosati, F. Croce, S. Panero, Progress in lithium polymer battery R and D, J. Power Sources, 100 (2001) 93-100.

[24] J. Syzdek, Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes-A novel approach, J. Power Sources, 194 (2009) 66-72.

DOI: https://doi.org/10.1016/j.jpowsour.2009.01.070

[25] L. Damen, J. Hassoun, M. Mastragostino, B. Scrosati, Solid-state, rechargeable Li/LiFePO4 polymer battery for electric vehicle application', J. Power Sources, 195 (2010) 6902-6904.

DOI: https://doi.org/10.1016/j.jpowsour.2010.03.089

[26] S. Rajendran, T. Uma, Conductivity studies on PVC/PMMA polymer blend electrolyte, Materials Letters, 44 (2000) 242-247.

DOI: https://doi.org/10.1016/s0167-577x(00)00036-7

[27] S. Rajendran, R. Kannan, O. Mohendran, An electrochemical investigation on PMMA/PVdF blend-based polymer electrolytes, Mater. Lett. 49 (2001) 172-179.

DOI: https://doi.org/10.1016/s0167-577x(00)00363-3

[28] MME. Jacob, E. Hackett, EP. Giannelis, From nanocomposite to nanogel polymer electrolytes, J. Mater. Chem. 13 (2003) 1-5.

[29] P. Peter PP Chu, MJ. Reddy, Sm2O3 composite PEO solid polymer electrolyte, J. Power Sources, 115 (2003) 288-294.

DOI: https://doi.org/10.1016/s0378-7753(02)00717-6

[30] CA. Angell, C. Liu, E. Sanchez, Rubbery Solid Electrolytes with Dominant Cationic Transport and High Ambient Conductivity, Nature, 362 (2001) 137-139.

DOI: https://doi.org/10.1038/362137a0

[31] J. Syzdek, Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes-A novel approach, J. Power Sources, 194 (2009) 66-72.

DOI: https://doi.org/10.1016/j.jpowsour.2009.01.070

[32] PV. Wright, Developments in Polymer Electrolytes for Lithium Batteries, Mater. Res Soc. Bull. 27 (2002) 597-602.

[33] MB. Armand, Polymer solid electrolytes - an overview, Solid State Ionics, 9 (1983) 745-754.

DOI: https://doi.org/10.1016/0167-2738(83)90083-8

[34] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303-4417.

DOI: https://doi.org/10.1021/cr030203g

[35] K. Xu, SS. Zhang, TR. Jow, W. Xu, CA. Angell, LiBOB as salt for lithium-ion batteries - A possible solution for high temperature operation, Electrochem. Solid State Lett. 5 (2002) A26-A29.

DOI: https://doi.org/10.1149/1.1426042

[36] BL. Papke, MA. Ratner, DF. Shriver, Conformation and ion‐transport models for the structure and ionic conductivity in complexes of polyethers with alkali Metal Salts, J. Electrochem. Soc. 129 (1982) 1694-1701.

DOI: https://doi.org/10.1149/1.2124252

[37] MB. Armand, Polymer Electrolytes, Ann. Rev. Mater. Res. 43 (1986) 503-525.

[38] MA. Ratner, DF. Shriver, Ion transport in solvent-free polymers, Chem. Rev. 88 (1988) 109-124.

DOI: https://doi.org/10.1021/cr00083a006

[39] JR. Owen, ln: Superionic solids and solid Electrolytes: Recent Trends (eds. ) Laskar, AL and Chandra, 1989, Academic Press, New York.

DOI: https://doi.org/10.1016/b978-0-12-437075-3.50005-1

[40] BCH. Steele, SE. Westons, Thermal history — conductivity relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes, Solid State Ionics, 2 (1981) 347-354.

DOI: https://doi.org/10.1016/0167-2738(81)90038-2

[41] JR. Maccallum, MD. Smith, CA. Vincent, The effects of radiation-induced crosslinking on the conductance of LiClO4·PEO electrolytes, Solid State Ionics, 11 (1984) 301-312.

DOI: https://doi.org/10.1016/0167-2738(84)90022-5

[42] CP. Rhodes, Roger Frech, A symmetry-based analysis of Raman and infrared spectra of the compounds (poly (ethylene oxide)3LiCF3SO3 and (poly (ethylene oxide)NaCF3SO3, Solid State Ionics, 136 (2000) 1131-1137.

DOI: https://doi.org/10.1016/s0167-2738(00)00608-1

[43] A. Vallee, S. Benser, J. Prud Homme, Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour, Electrochim. Acta, 37 (2000) 1579-1583.

DOI: https://doi.org/10.1016/0013-4686(92)80115-3

[44] N. Taniguchi, On the Basic Concept of Nanotechnology, In: Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, 1974, Japan Society of Precision Engineering, Tokyo.

[45] S. Ramesh, Tai Fung Yuen, Chia Jun Shen , Conductivity and FTIR studies on PEO–LiX [X: CF3SO3−, SO42−] polymer electrolytes, Spectrochim. Acta A, 69 (2008) 670-675.

DOI: https://doi.org/10.1016/j.saa.2007.05.029

[46] CAC. Sequeira, A. Hooper, The study of lithium electrode reversibility against (PEO)xLiF3CSO3 polymeric electrolytes, Solid State Ionics, 9 (1983) 1131-1138.

DOI: https://doi.org/10.1016/0167-2738(83)90142-x

[47] XL. Wu, S. Xin, HH. Seo, J. Kim, YJ. Guo, JS. Lee, Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer, Solid State Ionics, 186 (2011) 1-6.

DOI: https://doi.org/10.1016/j.ssi.2011.01.010

[48] HH. Sumathipala, J. Hassoun, S. Panero, B. Scrosati, High performance PEO-based polymer electrolytes and their application in rechargeable lithium polymer batteries, Ionics, 13 (2002) 281-286.

DOI: https://doi.org/10.1007/s11581-007-0137-4

[49] D. Zhang, Huiyan, Zhi Zhu, Hian Zhang Jian Wang, Qiln, Electrochemical stability of lithium bis(oxatlato) borate containing solid polymer electrolyte for lithium ion batteries', J. Power Sources, 196 (2011) 10120-10125.

DOI: https://doi.org/10.1016/j.jpowsour.2011.07.056

[50] V. Aravindan, P. Vickraman, T. Prem Kumar, ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB, J. Mem. Sci. 302 (2007) 146-151.

DOI: https://doi.org/10.1016/j.memsci.2007.07.044

[51] AS. Arico, P. Bruce, B. Scrosati, JM. Tarascon, Van W Schalkwijc, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366-377.

DOI: https://doi.org/10.1038/nmat1368

[52] GB. Appetecchi, S. Scaccia, S. Passerini, Investigation on the Stability of the Lithium‐Polymer Electrolyte Interface', J. Electrochem. Soc. 147 (2000) 4448-4452.

DOI: https://doi.org/10.1149/1.1394084

[53] L. Persi, F. Croce, B. Scrosati, E. Plichta, MA. Hendrickson, Poly (ethylene oxide)-based, nanocomposite electrolytes as improved separators for rechargeable lithium polymer batteries the Li/LiMn3O6 Case', J. Electrochem. Soc. 149 (2002).

DOI: https://doi.org/10.1149/1.1433833

[54] GB. Appetecchi, F. Croce, G. Dautzenberg, M. Mastragostino, F. Ronci, B. Scrosati, F. Soavi, A. Zaneli, F. Alessandrini, PP. Prosini, Composite polymer electrolytes with improved lithium metal electrode interfacial properties: I. elechtrochemical properties of dry PEO‐LiX systems, J. Electrochem. Soc. 145 (1988).

DOI: https://doi.org/10.1149/1.1838926

[55] GB. Appetecchi, P. Romagnoli, B. Scrosati, Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries, Electrochem. Commn. 3 (2001) 281-284.

DOI: https://doi.org/10.1016/s1388-2481(01)00137-0

[56] K. Murata, S. Izuchi, Y. Yoshihisa, An overview of the research and development of solid polymer electrolyte batteries, Electrochim. Acta, 45 (2001) 1501-1508.

DOI: https://doi.org/10.1016/s0013-4686(99)00365-5

[57] ZH. Li, HP. Zhanga, P. Zhanga, YP. Wua, XD. Zhou, Macroporous nanocomposite polymer electrolyte for lithium-ion batteries, J. Power Sources, 184 (2008) 562-565.

DOI: https://doi.org/10.1016/j.jpowsour.2008.02.068

[58] F. Croce, GB. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Nature, 394 (1998) 456-458.

DOI: https://doi.org/10.1038/28818

[59] R. Raghavan, J. Choi, J. Ahn, GCGS. Chauhana, H. Ahn, C. Nah, Novel electrospun poly (vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries, J. Power Sources, 184 (2008).

DOI: https://doi.org/10.1016/j.jpowsour.2008.03.027

[60] Z. Gadjourova, YG. Andreev, DP. Tunstall, PG. Bruce, Ionic conductivity in crystalline polymer electrolytes, Nature, 412 (2001) 520-523.

DOI: https://doi.org/10.1038/35087538

[61] G. Jiang, S. Maeda, H. Yang, Y. Saito, S. Tanase, T. Sakai, All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes, J. Power Sources, vol. 141 (2005) 143-148.

DOI: https://doi.org/10.1016/j.jpowsour.2004.09.004

[62] F. Croce, L. Persi, F. Ronci, B. Scrosati, Nanocomposite polymer electrolytes and their impact on the lithium battery technology, Solid State Ionics, 135 (2000) 47-52.

DOI: https://doi.org/10.1016/s0167-2738(00)00329-5

[63] Y. Wang, K. Takahashi, KH. Lee, GZ. Cao, Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation, Adv. Funct. Mater. 16 (2006) 1133-1144.

DOI: https://doi.org/10.1002/adfm.200500662

[64] A. D'Epifanio, F. Serraino Fiory, S. Licoccia, E. Traversa, B. Scrosati, F. Croce, Metallic-lithium, LiFePO4-based polymer battery using PEO—ZrO2 nanocomposite polymer electrolyte, J. Appl. Electrochem. 34 (2004) 403-408.

DOI: https://doi.org/10.1023/b:jach.0000016623.42147.68

[65] JE. Weston, CH. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes, Solid State Ionics, 7 (1982) 75-79.

DOI: https://doi.org/10.1016/0167-2738(82)90072-8

[66] F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, R. Caminiti, Physical and chemical properties of nanocomposite polymer electrolytes, J. Phys Chem B, 103 (1999) 10632-10638.

DOI: https://doi.org/10.1021/jp992307u

[67] B. Kumar, LG. Scanlon, Polymer–ceramic composite electrolytes: conductivity and thermal history effects, Solid State Ionics, 124 (1999) 239-254.

DOI: https://doi.org/10.1016/s0167-2738(99)00148-4

[68] B. Kumar, LG. Scanlon, Polymer-ceramic composite electrolytes, J. Power Sources, 52, (1994) 261-268.

DOI: https://doi.org/10.1016/0378-7753(94)02147-3

[69] B. Kumar, SJ. Rodrigues, LG. Scanlon, Ionic Conductivity of Polymer-Ceramic Composites, J. Electrochem. Soc. 148 (2001) A1191- A1195.

DOI: https://doi.org/10.1149/1.1403729

[70] F. Croce, S. Sacchetti, B. Scrosati, Advanced, lithium batteries based on high-performance composite polymer electrolytes, J. Power Sources, 162 (2006) 685-689.

DOI: https://doi.org/10.1016/j.jpowsour.2006.07.038

[71] E. Strauss, D. Golodnitsky, G. Ardel, E. Peled, Charge and mass transport properties of LiI-P(EO)n-Al2O3-based composite polymer electrolytes, Electrochim. Acta, 43 (1998) 1315-1320.

DOI: https://doi.org/10.1016/s0013-4686(97)10036-6

[72] J. Xi, S. Miao, X. Tang, Selective transporting of lithium ion by shape selective molecular sieves zsm-5 in peo-based composite polymer electrolyte, Macromolecules, 37 (2004) 8592-8598.

DOI: https://doi.org/10.1021/ma048849d

[73] CW. Lin, CL. Hung, M. Venkateswarlu, BJ. Hwang, Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries, J. Power Sources, 146 (2005) 397-491.

DOI: https://doi.org/10.1016/j.jpowsour.2005.03.028

[74] HY. Sun, HJ. Sohn, O. Yamamoto, Y. Takeda, Y, N. Imanishi, Enhanced lithium‐ion transport in PEO‐based composite polymer electrolytes with ferroelectric BaTiO3, J. Electrochem. Soc. 146 (1999) 1672-1677.

DOI: https://doi.org/10.1149/1.1391824

[75] HY. Sun, Y. Takeda, N. Imanishi, O. Yamamoto, HJ. Sohn, Ferroelectric materials as ceramic filler in solid composite polyethylene oxide‐based electrolytes, J. Electrochem. Soc. 147 (2000) 2462-2467.

DOI: https://doi.org/10.1149/1.1393554

[76] D. Shanmukaraj, GX. Wang, R. Murugan, HK. Liu, Ionic conductivity and electrochemical stability of poly(methylmethacrylate)–poly(ethylene oxide) blend-ceramic fillers composites, J. Phys Chem Solids, 69 (2008) 243-248.

DOI: https://doi.org/10.1016/j.jpcs.2007.08.072

[77] S. Arup Dey, S. Karan, SK. De, Thermal and electric properties of CeO2 nanoparticles dispersed in polyethylene oxide: NH4ClO4 complex, Solid State Ionics, 178 (2008) 1963-(1968).

DOI: https://doi.org/10.1016/j.ssi.2007.12.063

[78] K. Karuppasamy, R. Antony, S. Thanikaikarasan, S. Balakumar, X. Sahaya Shajan, Combined effect of nanochitosan and succinonitrile on structural, mechanical, thermal, and electrochemical properties of plasticized nanocomposite polymer electrolytes (PNCPE) for lithium batteries, Ionics, 19 (2013).

DOI: https://doi.org/10.1007/s11581-012-0806-9

[79] MAS. Azizi Samir, F. Alloin, W. Gorecki, J. Sanchez, A. Dufresne, Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers, J. Phys. Chem. B, 108 (2004) 10845-10849.

DOI: https://doi.org/10.1016/j.electacta.2004.05.021

[80] MAS. Azizi Samir, F. Alloin, JY. Sanchez, N. El Kissi, A. Dufresne, Cross-Linked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers, Macromolecules, 37 (2004) 1386-1390.

DOI: https://doi.org/10.1021/ma049504y

[81] Yarjan Abdul Samad, Ali Asghar, Boor Singh Lalia, Raed Hashaikeh, Networked cellulose entrapped and reinforced PEO-based solid polymer electrolyte for moderate temperature applications, J. Appl. Polym. Sci. 129 (2013) 2998-3006.

DOI: https://doi.org/10.1002/app.39033

[82] Marcin Chelmecki, Wolfgang H Meyer, Gerhard Wegner, Effect of crosslinking on polymer electrolytes based on cellulose, J. Appl. Polym. Sci. 105 (2007) 25-29.

DOI: https://doi.org/10.1002/app.26108

[83] Fannie Alloin, Alessandra D'Aprea, Nadia El Kissi, Alain Dufresne, Frédéric Bossard Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites, Electrochim. Acta, 55 (2010) 5186-5194.

DOI: https://doi.org/10.1016/j.electacta.2010.04.034

[84] N. Angulakshmi, T. Prem Kumar, Sabu Thomas, A. Manuel Stephan, Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide–LiN(C2F5SO2)2 polymer electrolytes, Electrochim. Acta, 55 (2010) 1401-1406.

DOI: https://doi.org/10.1016/j.electacta.2009.04.055

[85] AM. Stephan, TP. Kumar, MA. Kulandhainathan, NA. Lakshmi, Chitin incorporated PEO based nanocomposite polymer electrolytes for lithium batteries, J. Phys. Chem. B, 113 (2009) 1963-(1971).

[86] K. Karuppasamy, T. Linda, S. Thanikaikarasan, S. Balakumar, S. Mahalingam, PJ. Sebastian, X. Sahaya Shajan, Electrical and dielectric behavior of nano-bio ceramic filler incorporated polymer electrolytes for rechargeable lithium batteries, J. New Mater. Electrochem. Sys. 16 (2013).

[87] K. Karuppasamy, S. Thanikaikarasan, S. Balakumar, Paitip Thiravetyan, D. Eapen, PJ. Sebastian, X. Sahaya Shajan , Effect of chitin nanofibres on the electrochemical and interfacial properties of composite solid polymer electrolytes, J. New Mater. Electrochem. Sys. 16 (2013).

DOI: https://doi.org/10.1007/s11581-012-0678-z

[88] IE. Kelley, JR. Owen, CH. Steele, Poly (ethylene oxide) electrolytes for operation at near room temperature, J. Power Sources, 14 (1983) 13-17.

DOI: https://doi.org/10.1016/0378-7753(85)88004-6

[89] T. Itoh, Y. Miyamura, Y. Iohikawa, T. Uno, M. Kubo, O. Yamamoto, Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer, J. Power Sources, 1 19 (2003) 403-408.

DOI: https://doi.org/10.1016/s0378-7753(03)00261-1

[90] B. Sander, T. Steurich, K. Wiesner, H. Bischoff, Solid polymer electrolytes based on oligo(ethylene glycol)methacrylates, Polym. Bull. 28 (1992) 355-360.

DOI: https://doi.org/10.1007/bf00294835

[91] G. Nagasubramanian, S. Di Stefano, 12‐Crown‐4 Ether‐assisted enhancement of ionic conductivity and interfacial kinetics in polyethylene oxide electrolytes, J. Electrochem. Soc. 137 (2012) 3830-3835.

DOI: https://doi.org/10.1149/1.2086309

[92] T. Jose Benedict, S. Banumathi, A. Veluchamy, A. Ahmed, S. Rajendran, Characterization of plasticized solid polymer electrolyte by XRD and AC impedance methods, J. Power Sources, 7 (1998) 171-176.

DOI: https://doi.org/10.1016/s0378-7753(98)00063-9

[93] T. Shodai, BB. Owens, H. Ohtsuke, J. Yamaki, Thermal Stability of the Polymer Electrolyte  (  PEO  ) 8LiCF3 SO 3, J. Electrochem. Soc. vol. 141 (1994) 2978-2981.

[94] HJ. Walls, S. Peter A. Fedkiw, Thomas A. Zawodzinski, Z. Saad A. Khana, Ion Transport in Silica Nanocomposite Electrolytes, J. Electrochem. Soc. vol. 150 (2003) E165-E174.

DOI: https://doi.org/10.1149/1.1544635

[95] LZ. Fan, J. Maier, Composite effects in poly (ethylene oxide)–succinonitrile based all-solid electrolytes, Electrochem. Commn. 8 (2006) 1753-1756.

DOI: https://doi.org/10.1016/j.elecom.2006.08.017

[96] LZ. Fan, YS. Hu, AJ. Bhattacharya, J. Maier, Succinonitrile as a versatile additive for polymer electrolytes, Adv. Funct. Mater. 17 (2007) 2800-2807.

DOI: https://doi.org/10.1002/adfm.200601070

[97] LZ. Fan, XL. Wang, L. Fei, F. Wang, Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer, Solid State Ionics, 179, (2008) 1772-1775.

DOI: https://doi.org/10.1016/j.ssi.2008.01.035

[98] PJ. Alarco, Y. Abu-Lebdeh, A. Abouimrane, MB. Armand, The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors, Nature Mater. 3 (2004) 476-481.

DOI: https://doi.org/10.1038/nmat1158

[99] A. Abouimrane, Y. Abu-Lebdeh, PJ. Alarco, M. Armand, Plastic Crystal-Lithium Batteries: An Effective Ambient Temperature All-Solid-State Power Source, J. Electrochem. Soc. 151 (2004) A1028-1031.

DOI: https://doi.org/10.1149/1.1759971

[100] X. Andrien, T. Vicedo, C. Fringanc, Plasticization of cross-linked polymer electrolytes, J. Power Sources, 54 (1995) 487-490.

DOI: https://doi.org/10.1016/0378-7753(94)02131-l

[101] CW. Walker, M. Salomon, Improvement of Ionic Conductivity in Plasticized PEO‐Based Solid Polymer Electrolytes, J. EIectrochm. Soc. 140 (1993) 3409-3412.

DOI: https://doi.org/10.1149/1.2221103

[102] Roger Frech, Sangamithra Chintapalli, Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF 3SO 3 electrolytes, Solid State Ionics, 85(1) (1996) 61-66.

DOI: https://doi.org/10.1016/0167-2738(96)00041-0

[103] XQ. Yang, HS. Lee, L. Hanson, J. Me Breen, Y. Okamoto, Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect, J. Power Sources, 54 (1995)198-204.

DOI: https://doi.org/10.1016/0378-7753(94)02066-c

[104] HS. Lee, XQ. Yang, J. McBreen, ZS. Xu, TA. Skotheim, Y. Okamoto, Ionic conductivity of a polymer electrolyte with modified carbonate as a plasticizer for poly(ethylene oxide), J. EIectrochem. Sci. 141 (1994) 886-889.

DOI: https://doi.org/10.1149/1.2054852

[105] HMJC. Pitawala, MAKL. Dissanayake, VA. Seneviratne, Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf , Solid State Ionics, 178 (2007) 885-888.

DOI: https://doi.org/10.1016/j.ssi.2007.04.008

[106] HMJC. Pitawala, MAKL. Dissanayake, VA. Seneviratne, BE. Mellander, I. Albinson, I Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf: Al2O3 nanocomposite polymer electrolyte system, J. Solid State Electrochem. 17 (2004).

DOI: https://doi.org/10.1007/s10008-008-0505-7

[107] Poonam Sharma, DK. Kanchan, Nirali Gondaliya, Meenakshi Pant, Manish S Jayswal, Prajakta Joge, Characterization studies of plasticized PEO-PMMA nano-composite polymer electrolyte system, AIP Conf. Proceed. 1447 (2006) 241-242.

DOI: https://doi.org/10.1063/1.4709969

[108] Jitender Paul Sharma, SS. Sekhon, Relative role of plasticizer and nano size fumed silica on the conductivity behaviour of PEO-NH4PF6 polymer electrolytes, Indian Journal of Engineering and Materials Sciences, 12 (2005) 557-562.

[109] Nirali Gondaliya, Kanchan, DK. Poonam Sharma, Manish S. Jayswal, Dielectric and electric properties of plasticized PEO-AgCF3SO3-SiO2 nanocomposite polymer electrolyte system, Polymer Comp. 33 (2014) DOI: 10. 1002/pc. 22362.

DOI: https://doi.org/10.1002/pc.22362

[110] K. Karuppasamy, C. Vijil Vani, R. Antony, S. Balakumar, X. Sahaya Shajan, Effect of succinonitrile and nano hydroxy-apatite on ionic conductivity and interfacial stability of polyether based plasticized nanocomposite polymer electrolytes (PNCSPE), Polymer Bulletin, 70 (2013).

DOI: https://doi.org/10.1007/s00289-013-0970-8

[111] K. Karuppasamy, S. Thanikaikarasan, R. Antony, S. Balakumar, X. Sahaya Shajan, X Effect of nanochitosan on electrochemical, interfacial and thermal properties of composite solid polymer electrolytes, Ionics, 18 (2012) 737-745.

DOI: https://doi.org/10.1007/s11581-012-0678-z

[112] K. Karuppasamy, C. Vijil Vani, A. Nichelson, S. Balakumar, X. Sahaya Shajan, Effect of nanochitosan and succinonitrile on the AC ionic conductivity of plasticized nanocomposite polymer electrolytes (PNCSPE), 1536 (2013) 845-846.

DOI: https://doi.org/10.1063/1.4810492

Fetching data from Crossref.
This may take some time to load.