A Review on the Characteristics of the New Multiferroic Three-Ply Structure Ferroelectric-Ferromagnetic Nanocomposite


Article Preview

A new kind of multiferroic three-ply-structured nanoceramic composites consisting of nanosized alloy-based magnetostrictive (MS) and ferroelectric powders (FE) were fabricated successfully by a conventional solid state reaction in air or argon ambient in our previous investigation. But there are still some problems needed to be solved, for example, the magnetic aging and decrease of saturated magnetization phenomena occurred in samples are perhaps related to the harsh preparation conditions such as storage duration and sintering atmosphere and so forth. In this paper, we will review the characteristics of the novel nanocomposites by means of the microstructure and magnetism existed in the samples with nanosized MS powders (i.e. (Tb0.3Dy0.7)0.75Pr0.25Fe1.55, Sm0.88Nd0.12Fe1.93) as fillers. Also, we hope some reasonable explanations and deeper understandings can be concluded about the proposed ageing and magnetism reduction exhibited when the samples were subjected to co-firing in air or argon ambient. Finally, the potential improvement and multifunctional applications in the future are also suggested.



Edited by:

Prof. Yafang Han, Zhong Wei Gu and Qiang Fu




H. F. Zhang et al., "A Review on the Characteristics of the New Multiferroic Three-Ply Structure Ferroelectric-Ferromagnetic Nanocomposite", Materials Science Forum, Vol. 815, pp. 159-165, 2015

Online since:

March 2015




* - Corresponding Author

[1] N.A. Spaldin, and M. Fiebig, The renaissance of magnetoelectric multiferroics, Science 309 (2005) 391-392.

[2] C.W. Nan, M.I. Bichurin, S.X. Dong and D. Viehland, G. Srinivasan, Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions, J. Appl. Phys. Vol. 103 (2008) 031101.

DOI: https://doi.org/10.1063/1.2836410

[3] K.F. Wang, J.M. Liu, and Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders, Adv. Phys. 58 (2009) 321-448.

[4] J.V. Suchtelen, Product properties: a new application of composite materials, Philips. Res. Rep. 27 (1972) 28-37.

[5] M.I. Bichurin, V.M. Petrov, R.V. Petrov, G.N. Kapralov, Y.V. Kiliba, F. I. Bukashev, A.Y. Smirnov, A.S. Tatarenko, Magnetoelectric Microwave Devices, Ferroelectrics, 280 (2002) 211-218.

DOI: https://doi.org/10.1080/00150190214807

[6] D.V. Chashin, Y.K. Fetisov, K.E. Kamentsev, and G. Srinivasan, Resonance magnetoelectric interactions due to bending modes in a nickel-lead zirconate titanate bilayer, Appl. Phys. Lett. 92 (2008) 102511-3.

DOI: https://doi.org/10.1063/1.2896607

[7] J. Ryu, A.V. Carazo, K. Uchino, and H.E. Kim, Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials, J. Electroceram. 8 (2002) 107-119.

[8] Y.J. Wang, S.W. Or, W.H.L. Chan, X.Y. Zhao, and H.S. Luo, Enhanced magnetoelectric effect in longitudinal-transverse mode Terfenol-D/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminate composites with optimal crystal cut, J. Appl. Phys. 103 (2008) 124511.

DOI: https://doi.org/10.1063/1.2943267

[9] Y.J. Wang, S.W. Or, W.H.L. Chan, X.Y. Zhao, and H.S. Luo, Giant sharp converse magnetoelectric effect from the combination of a piezoelectric transformer with a piezoelectric/magnetostrictive laminated composite, Appl. Phys. Lett. 93 (2008).

DOI: https://doi.org/10.1063/1.2976329

[10] Y.J. Wang, S.W. Or, W.H.L. Chan, X.Y. Zhao, and H.S. Luo, Magnetoelectric effect from mechanically mediated torsional magnetic force effect in NdFeB magnets and shear piezoelectric effect in 0. 7Pb(Mg1/3Nb2/3)O3–0. 3PbTiO3 single crystal, 92 (2008).

DOI: https://doi.org/10.1063/1.2901162

[11] H.F. Zhang, S.W. Or, and W.H.L. Chan, Multiferroic properties of Ni0. 5Zn0. 5Fe2O4–Pb"Zr0. 53Ti0. 47…O3 ceramic composites, J. Appl. Phys. 104 (2008) 104109.

[12] R.A. Islam, N. Yong, A.G. Khachaturyan, and P. Shashank, Giant magnetoelectric effect in sintered multilayered composite structures, J. Appl. Phys. 104 (2008) 044103-5.

DOI: https://doi.org/10.1063/1.2966597

[13] Y. P. Guo, Y. Liu, J.L. Wang, R. L. Withers, H. Chen, L. Jin, and P. Smith, Giant Magnetodielectric Effect in 0-3 Ni0. 5Zn0. 5Fe2O4-Poly(vinylidene-fluoride) Nanocomposite Films, J. Phys. Chem. C. 114 (2010) 13861-6.

DOI: https://doi.org/10.1021/jp103777r

[14] J.X. Zhang, J.Y. Dai, L.C. So, C.L. Sun, C.Y. Lo et al., The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/PVDF-TrFE 0–3 nanocomposites, J. Appl. Phys. 105 (2009) 054102.

DOI: https://doi.org/10.1063/1.3078111

[15] J. Ma, Z. Shi, and C. W. Nan, Magnetoelectric properties of composites of single Pb(Zr, Ti)O3 of 1-3-type structure, Adv. Mater. 19 (2007) 2571-2573.

DOI: https://doi.org/10.1002/adma.200700330

[16] H.F. Zhang, C.L. Mak, D.J. Zhang, C.B. Liu, J. Alloys. Compd. Complex impedance and magnetoelectric effect analyses of a novel three-ply-structured (Tb0. 3Dy0. 7)0. 75Pr0. 25Fe1. 55–Pb(Zr0. 53Ti0. 47)O3 nanoceramic composites, 554 (2013) 450-457.

DOI: https://doi.org/10.1016/j.jallcom.2012.11.204

[17] H.F. Zhang, S.W. Or, and H. L. Wa Chan, F. Yang, Formation and characterization of three-ply structured multiferroic Sm0. 88Nd0. 12Fe1. 93–Pb(Zr0. 53Ti0. 47)O3 ceramic composites via a solid solution process, J. Eur. Ceram. Soc. 31 (2011).

DOI: https://doi.org/10.1016/j.jeurceramsoc.2011.03.032

[18] H.G. Zhang, Y.J. Zhang W.H. Wang, G.H. Wu, Origin of the constricted hysteresis loop in cobalt ferrites revisited, J. Magn. Magn. Mater. 323 (2011) 1980-(1984).

[19] A.P. Roberts, Y.L. Cui, and K. L. Verosub, Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems, J. Geophys. Res. VOL. 100 (1995) 17, 909-17, 924.

DOI: https://doi.org/10.1029/95jb00672