Effect of Hafnium on the Microstructure and Creep Property of a Hot Corrosion Resistant Superalloy


Article Preview

The effects of the selective addition of Hafnium (Hf) on the grain boundary, phase, carbides and creep properties of experimented nickel superalloy after standard heat treatment and long-term exposure were investigated. Predicted by the Bayesian neural network, the creep life is prolonged with Hf content of 0-0.6 mass%, which is more effective at low stresses. The decrease of creep life of Hf free alloy after long term exposure was pronounced. Comparative study showed that the mainly small, coherent, blocky and closely spaced MC(2) and M23C6 carbides precipitated on the grain boundaries in the 0.4wt% Hf contained alloy, and that relatively larger, incoherent MC(1) carbides precipitated on the grain boundaries in the Hf free alloy. During long term thermal exposure, fine discrete M23C6 carbides decomposed from primary carbide, inducing a layer along the grain boundary, and the coarsening of grain boundary in Hf free alloy is more pronounced. At high stresses, the Hf-free alloy exhibited a stronger tendency of rafting than the 0.4Hf alloy, while the tendency of appearance of rafting was very similar at low stresses. However, Hf can render the alloy prone to the formation of σ phase, according to D-electrons method. Thus, the Hf content needs to be controlled to a suitable level.



Edited by:

Yafang Han, Qiang Zhang and Bin Jiang




J. S. Hou et al., "Effect of Hafnium on the Microstructure and Creep Property of a Hot Corrosion Resistant Superalloy", Materials Science Forum, Vol. 816, pp. 641-647, 2015

Online since:

April 2015




* - Corresponding Author

[1] R.T. Holt, W. Wallace, International metals Reviews, 21(1976) 1.

[2] G.L. Erickson, Polycrystalline cast superalloys, Metal handbook, 10th ed., 10 (1990) 981.

[3] J. Radavich, D. Furrer, T. Carneiro, J. Lemsky, in: R.C. Reed, et. al. (Eds. ), Superalloys 2008, TMS, Warrendale, PA, 2008, 63-72.

[4] C.G. Bieber, R.F. Decker, Trans AIME, 221(1961) 629.

[5] G.M. Meetham, Metals Tech., 11(1984) 414.

[6] S.A. Sivanandam, S. Sumathi, S.N. Deepa, Introduction to neural networks using MATLAB 6. 0, 1st ed. New Delhi, Tata McGraw-Hill Publishing Company Limited, (2006).

[7] Y. S. Yoo, C. Y. Jo, C. N. Jones, Mater. Sci. Eng. A, 336 (2002) 22-29.

[8] W. Sha, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A, 223 (2002) 91-98.

[9] A. Shafyei, S.H. Mousavi Anijdanb, A. Bahrami, Mater. Sci. Eng. A, 431 (2006) 206-221.

[10] S. H. Mousavi Anijdan, A. Bahrami, Mater. Sci. Eng. A, 396 (2005) 138-142.

[11] China Aeronautical Materials Handbook (second edition), standards press of China, Beijing, (2002).

[12] W. Schneider, H. Mughrabi, in: B. wilshire, R.W. Evans, (Eds), creep and fracture of engineering materials and Structures, Proc. Fifth Internat. Conf., Swansea, London, 1993, p.209.

[13] S. Tin, T. M. Pollock, Mater. Sci. and Eng. A, 348 (2003) 111.

[14] F. R. N. Nabarro, de Villiers HL, The physics of creep, London, Taylor and Francis, 1995, 245.

[15] F. Touratier, E. Andrieu, D. Poquillon, B. Viguier, Mater. Sci. and Eng. A, 510-511 (2009) 244-249.

[16] J S Hou., J T Guo, L Z Zhou, H Q Ye. Z. metallkund., 97(2006)174-181.

[17] J.S. Hou, J.T. Guo, G.X. Yang, L.Z. Zhou, X.Z. Qin, H.Q. Ye. Mater. Sci. Eng. A, 498 (2008) 449-458.

[18] T.M. Pollock, A.S. Argon, Acta Metall. Mater., 42 (1994) 1859-1874.

[19] P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, Pintu Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, M.K. Mitra, Acta Mater., 52 (2004) 5687.

DOI: https://doi.org/10.1016/j.actamat.2004.08.030

[20] H.A. Kuhn, H. Biermann, T. Ungár, H. Mughrabi, Acta Metall. Mater., 39 (1991) 2783–2794.

[21] U. Brückner, A. Epishin, T. Link, K. Dressel, Mater. Sci. Eng. A, 247 (1998) 23–31.

[22] B. vonGroBmann, H. Biermann,U. Tetzlaff, F. Pyczak,H. Mughrabi, Scrip. Mater., 43 (2000) 859-864.

[23] D. C. Madeleine, The microstucture of superalloys, Gordon and breach science publishers, 1997, 67-81.

[24] P. Florian, N. Steffenr, G. Mathias, Mater. Sci. and Eng. A, 510-511 (2009) 295-300.

[25] J. S. Hou, J. T. Guo, L. Z. Zhou, C. Yuan, H. Q. Ye, Mater. Sci. Eng. A, 374 (2004) 327-334.

[26] H. Harada, K. Ohno, T. Yamagata, T. Yokokawa, M. Yamazaki, in:S. Reichman, et al., (eds), superalloy 1988, Warrendale, PA, 1998, 733.

[27] A. F. Gimei, .D. D. Pearson, D. L. Anton, in: C.C. Koch, et al., (eds), high temperature ordered intermetallic alloys, Mat. Res. Soc. Symp. Proc., Pittsburgh, PA, Mater. Res. Soc., 1985, 293.

[28] L. Wang, G Xie, J Zhang, LH Lou, Materials science forum, 546-549 (2007)1235-1240.

[29] L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng., A, 361(2003)191.

[30] J. Hammer, H. Mughrabi, in: H. E Exner, et al., (Eds), Advanced Materials and Processes, Oberuresl, Germany, 1990, 445.

[31] J.Y. Chen, B. Zhao, Q. Feng, L.M. Cao, TMS 2009 138th Annual Meeting & Exhibition, 2009, 233-240.

[32] Z.H. Yu, L. Liu, J. Zhang, transactions of nonferrous metals society of China, 24 (2014) 339-345.

[33] Q.Z. Chen, C.N. Jones, D.M. Knowles, Mater. Sci. and Eng. A, 385 (2004) 402-418.

[34] J.S. Hou P.J. Cong L.Z. Zhou X.Z. Qin, C. Yuan, J.T. Guo. The Chinese Journal of Nonferrous Metals, 05 (2011) 945-0953.

Fetching data from Crossref.
This may take some time to load.