A Phase-Field Model for Rapid Solidification with Non-Equilibrium Solute Diffusion


Article Preview

Since the growth velocity can be comparable with or even larger than the solute diffusion velocity in the bulk phases, modeling of rapid solidification with non-equilibrium solute diffusion becomes quite an important topic. In this paper, an effective mobility approach was proposed to derive the current phase field model (PFM). In contrast with the previous PFMs that were derived by the so-called kinetic energy approach, diffusionless solidification happens not only in the bulk phases but also inside the interface when the growth velocity is equal to the solute diffusion velocity in liquid. A good agreement between the model predictions and experimental results is obtained for rapid solidification of Si-9at.%As alloy.



Edited by:

Prof. Yafang Han, Xuefeng Liu and Ying Wu




H. F. Wang et al., "A Phase-Field Model for Rapid Solidification with Non-Equilibrium Solute Diffusion", Materials Science Forum, Vol. 817, pp. 14-20, 2015

Online since:

April 2015




* - Corresponding Author

[1] D.M. Herlach, Non-equilibrium solidification of under-cooled metallic melts, Mater. Sci. Eng. Rep. R. 12(1994) 177-272.

[2] H.F. Wang, F. Liu, H.M. Zhai, K. Wang, Application of the maximal entropy production principle torapid solidification: A sharp interface model, Acta Mater. 60(2012) 1444-1454.

DOI: https://doi.org/10.1016/j.actamat.2011.11.038

[3] P. Galenko, Extended thermo-dynamical analysis of a motion of the solid-liquid interfacein a rapidly solidifying alloy, Phys. Rev. B. 65(2002) 144103.

[4] S.L. Sobolev, Rapid solidification under local nonequilibrium conditions, Phys. Rev. E. 55(1997)6845-6854.

DOI: https://doi.org/10.1103/physreve.55.6845

[5] D. Jou, J. Casas-Vázquez, G. Lebon, Extended irreversible thermodynamics, Springer, Berlin, (2010).

DOI: https://doi.org/10.1007/978-90-481-3074-0_2

[6] S.L. Sobolev, Local non-equilibrium model for rapid solidification of under-cooled melts, Phys. Lett. A. 199 (1995) 383-386.

[7] P. Galenko, D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E. 71(2005)046125.

DOI: https://doi.org/10.1103/physreve.71.046125

[8] M.J. Aziz, Model for solute redistribution during rapid solidifcation,J. Appl. Phys. 53(1982) 1158-1168.

[9] M.J. Aziz, T. Kaplan, Continuous growth model for interfacemotion during alloy solidification, Acta Metall. 36(1988) 2335-2347.

DOI: https://doi.org/10.1016/0001-6160(88)90333-1

[10] H. Humadi, J.J. Hoyt, N. Provatas, Phase-field-crystal study of solute trapping, Phys. Rev. E. 87(2013)022404.

DOI: https://doi.org/10.1103/physreve.87.022404

[11] P. Galenko, E.V. Abramova, D. Jou D et al., Solute trapping in rapid solidification of a binary dilute system: A phase-field study, Phys. Rev. E. 84(2011) 041143.

DOI: https://doi.org/10.1103/physreve.84.041143

[12] V.G. Lebedev, E.V. Abramova, D.A. Danilov, P.K. Galenko, Phase-field modeling of solute trappingL comprative analysis of paraboloc and hyperbolic models, Int. J. Mat. Res. 101(2010) 473-479.

[13] H.F. Wang, F. Liu, G.J. Ehlen, D.M. Herlach, Application of the maximal entropy production principle torapid solidification: A multi-phase-field model, Acta Mater. 61(2013) 2617-2627.

DOI: https://doi.org/10.1016/j.actamat.2013.01.041

[14] L. Onsager, Reciprocal relations in irreversible processes I., Phys. Rev. 37(1931) 405-426.

DOI: https://doi.org/10.1103/physrev.37.405

[15] H. Ziegler, An introduction to thermodynamics, North-Holland, Amsterdam, (1983).

[16] L.M. Martyushev, V.D. Seleznev, Maximum entropy production principle in physics, chemistry and biology, Phys. Rep. 426(2006) 1.

DOI: https://doi.org/10.1016/j.physrep.2005.12.001

[17] F.D. Fischer, J. Svoboda, H. Petryk, Thermodynamic extremal principles for irreversible processes in materials science, Acta Mater. 67(2014)1-20.

DOI: https://doi.org/10.1016/j.actamat.2013.11.050

[18] J.A. Kittl, P.G. Sanders, M.J. Aziz et al., Complete experimental test of kinetic models forrapid alloy solidification, Acta Mater. 48(2000)4797-4811.

DOI: https://doi.org/10.1016/s1359-6454(00)00276-7