Synchrotron X-Ray Study on Crack Prevention in AlN Crystals Grown on Gradually Decomposing SiC Substrates

Abstract:

Article Preview

We report on the growth method and the structural characterization of freestanding AlN crystals. An AlN layer is grown on a gradually decomposing SiC substrate yielding a freestanding crack free 2H single crystal with dislocation density 5×104 cm–2 and without grain boundaries as confirmed by synchrotron radiation phase contrast imaging and topography data. Wafers of 600–1000 μm thick and up to 15 mm in diameter are obtained. The thermal stress distribution in a conventional AlN/SiC structure is discussed. Theoretical estimates show that cracking of AlN layers is a natural result of their growth on undecomposed SiC substrates.

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Edited by:

Didier Chaussende and Gabriel Ferro

Pages:

1011-1014

Citation:

T. S. Argunova et al., "Synchrotron X-Ray Study on Crack Prevention in AlN Crystals Grown on Gradually Decomposing SiC Substrates", Materials Science Forum, Vols. 821-823, pp. 1011-1014, 2015

Online since:

June 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Yu. Chemekova, O.V. Avdeev, I.S. Barash, E.N. Mokhov, S.S. Nagalyuk, A.D. Roenkov, A.S. Segal, Yu.N. Makarov, M.G. Ramm, S. Davis, G. Huminic, H. Helava, Sublimation growth of 2 inch diameter bulk AlN crystals, Phys. Stat. Sol. C 5 (2008).

DOI: https://doi.org/10.1002/pssc.200778534

[2] I. Nagai, T. Kato, T. Miura, H. Kamata, K. Naoe, K. Sanada, H. Okumura, AlN bulk single crystal growth on 6H-SiC substrates by sublimation method, J. Crystal Growth 312 (2010) 2699–2704.

DOI: https://doi.org/10.1016/j.jcrysgro.2010.05.044

[3] E. Mokhov, I. Izmaylova, O. Kazarova, A. Wolfson, S. Nagalyuk, D. Litvin, A. Vasiliev, H. Helava, Yu. Makarov, Specific features of sublimation growth of bulk AlN crystals on SiC wafers, Phys. Stat. Sol. C 10 (2013) 445–448.

DOI: https://doi.org/10.1002/pssc.201200638

[4] L. Liu, B. Liu, J. H. Edgar, S. Rajasingam, M. Kuball, Raman characterization and stress analysis of AlN grown on SiC by sublimation, J. Appl. Phys. 92 (2002) 5183–5188.

DOI: https://doi.org/10.1063/1.1506195

[5] R. Dalmau, R. Schlesser, B.J. Rodriguez, R.J. Nemanich, Z. Sitar, AlN bulk crystals grown on SiC seeds, J. Crystal Growth 281 (2005) 68–74.

DOI: https://doi.org/10.1016/j.jcrysgro.2005.03.012

[6] M. Yu. Gutkin, I.A. Ovid'ko, Misfit strains and phase transformations in layered composite solids, J. Phys.: Condens. Matter 11 (1999) 8607–8616.

DOI: https://doi.org/10.1088/0953-8984/11/43/323

[7] L.E. McNeil, M. Grimsditch, R.H. French, Vibrational Spectroscopy of Aluminum Nitride, J. Am. Ceram. Soc. 76 (1993) 1132–1136.

[8] Z. Li, R.C. Bradt, Thermal expansion and thermal expansion anisotropy of SiC polytypes, J. Am. Ceram. Soc. 70 (1987) 445–448.

DOI: https://doi.org/10.1111/j.1151-2916.1987.tb05673.x

[9] G.A. Slack, S.F. Bartram, Thermal expansion of some diamondlike crystals, J. Appl. Phys. 46 (1975) 89–98.

[10] D. De Faoite, D.J. Browne, F.R. Chang-Díaz, K.T. Stanton, A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics, J. Mater. Sci. 47 (2012) 4211–4235.

DOI: https://doi.org/10.1007/s10853-011-6140-1