Optimization of Friction Stir Welded, Spring Steel Wire Reinforced EN AW-6082 Profile Joints


Article Preview

Composite extruded, unidirectionally spring steel wire reinforced profiles have great potential for lightweight applications. Joining of these profiles represents a difficult challenge due to the different material properties, which eliminate fusion welding as a possible joining method. Friction stir welding (FSW) has recently been used to join these profiles, the disadvantage of which is that the reinforcement elements may be bent and fragmented during welding leading to drastically reduced mechanical properties compared to non-joined profiles and even to the unreinforced matrix material. In order to minimize the disturbing influences of the reinforcement elements on the joining strength, the weld axis was shifted to the retreating side, reducing wire-pin contact at the advancing side. As a second remedial measure an insert made of matrix material was placed between the joining partners before joining in order to reduce the contact on both sides. In-situ tensile tests within an X-ray micro computed tomograph (µCT) showed that shifting the weld axis could not improve the joint quality significantly. However, the use of an insert improves the offset yield strength (Rp0.2) by about 50 %.



Materials Science Forum (Volumes 825-826)

Edited by:

Christian Edtmaier and Guillermo Requena




V. Walter et al., "Optimization of Friction Stir Welded, Spring Steel Wire Reinforced EN AW-6082 Profile Joints", Materials Science Forum, Vols. 825-826, pp. 457-464, 2015

Online since:

July 2015




* - Corresponding Author

[1] M. Kleiner, M. Schomäcker, M. Schikorra, A. Klaus, Herstellung verbundverstärkter Aluminiumprofile für ultraleichte Tragwerke durch Strangpressen, Mat. -wiss. u. Werkstofftech. 35 (2004) 431–439.

DOI: https://doi.org/10.1002/mawe.200400762

[2] M. Merzkirch, Verformungs- und Schädigungsverhalten der verbundstranggepressten, federstahldrahtverstärkten Aluminiumlegierung EN AW-6082, KIT Scientific Publishing, Karlsruhe, (2012).

[3] S. -F. Goecke, Energiereduziertes Lichtbogen-Fügeverfahren für wärmeempfindliche Werkstoffe, DVS-Verlag, 2005, p.44–48.

[4] M. Ericsson, Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG, International Journal of Fatigue 25 (2003) 1379–1387.

DOI: https://doi.org/10.1016/s0142-1123(03)00059-8

[5] E. Taban, E. Kaluc, Comparision between microstructure characteristics and joint performance of 5086-H32 aluminium alloy welded by MIG, TIG and friction stir welding processes, Kovove Mater 45 (2007) 241–248.

[6] V. Walter, K.A. Weidenmann, V. Schulze, A Comparison of FSW, BHLW and TIG Joints for Al-Si-Mg Alloy (EN AW-6082 T6), Procedia CIRP 18 (2014) 120–125.

DOI: https://doi.org/10.1016/j.procir.2014.06.118

[7] D. Storjohann, O.M. Barabash, S.A. David, P.S. Sklad, E.E. Bloom, S.S. Babu, Fusion and friction stir welding of aluminum-metal-matrix composites, Metall and Mat Trans A 36 (2005) 3237–3247.

DOI: https://doi.org/10.1007/s11661-005-0093-4

[8] M. Ruhsdorfer, M.F. Zaeh, Friction Stir Welding of Steel Reinforced Aluminium Extrusions, Awaji Island, Japan, (2008).

[9] T. Hammers, Merzkirch M., K.A. Weidenmann, V. Schulze, A.E. Tekkaya, Struktur-Eigenschafts-Beziehungen von Fügestellen, in: Fortschritt-Berichte VDI Reihe 2, p.115–131.

[10] T. Saeid, A. Abdollah-zadeh, H. Assadi, F. Malek Ghaini, Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel, Materials Science and Engineering: A 496 (2008) 262–268.

DOI: https://doi.org/10.1016/j.msea.2008.05.025

[11] Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Materials Science and Engineering: A 415 (2006) 250–254.

DOI: https://doi.org/10.1016/j.msea.2005.09.072

[12] J. Adamowski, C. Gambaro, E. Lertora, M. Ponte, M. Szkodo, Analysis of FSW welds made of aluminium alloy AW6082-T6, Archives of Materials Science and Engineering 2007 (2007) 453–460.

[13] Schmidt, H. N. B., T.L. Dickerson, J.H. Hattel, Material flow in butt friction stir welds in AA2024-T3, Acta Materialia 54 (2006) 1199–1209.

DOI: https://doi.org/10.1016/j.actamat.2005.10.052

[14] R. Zettler, T. Donath, dos Santos, J. F., F. Beckman, D. Lohwasser, Validation of Marker Material Flow in 4mm Thick Friction Stir Welded Al 2024-T351 through Computer Microtomography and dedicated Metallographic Techniques, Adv. Eng. Mater. 8 (2006).

DOI: https://doi.org/10.1002/adem.200600062

[15] J. ADRIEN, E. Maire, N. GIMENEZ, V. SAUVANTMOYNOT, Experimental study of the compression behaviour of syntactic foams by in situ X-ray tomography, Acta Materialia 55 (2007) 1667–1679.

DOI: https://doi.org/10.1016/j.actamat.2006.10.027

[16] T. Hirano, K. Usami, Y. Tanaka, C. Masuda, In situ x-ray CT under tensile loading using synchrotron radiation, J. Mater. Res. 10 (1995) 381–386.

DOI: https://doi.org/10.1557/jmr.1995.0381

[17] M. Kleiner, M. Schomäcker, M. Schikorra, A. Klaus, Manufacture of continuously reinforced profiles using 6060 billets, Proceedings of the Eighth Aluminum Extrusion Technology Seminar (2004) 461–468.

[18] DIN Deutsches Institut für Normung e.V., DIN EN 755-2 Aluminium und Aluminiumlegierungen - Stranggepresste Stangen, Rohre und Profile - Teil 2: Mechanische Eigenschaften, EN 755-2: 2013, 77. 150. 10, 755-2, Beuth Verlag GmbH, Berlin, 2013 (2013).

DOI: https://doi.org/10.1002/actp.1979.010300213

[19] S.R. Stock, Microcomputed tomography: Methodology and applications, CRC Press, Boca Raton, (2009).

[20] L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. Blandin, J. Buffière, W. Ludwig, E. Boller, D. Bellet, C. Josserond, X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 200 (2003).

DOI: https://doi.org/10.1016/s0168-583x(02)01689-0

[21] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. -Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nature methods 9 (2012).

DOI: https://doi.org/10.1038/nmeth.2019

[22] T. Hammers, K.A. Weidenmann, V. Schulze, Ermüdung an rührreibgeschweißten, federstahldrahtverstärkten EN AW-6060-Matrixverbunden: [Chemnitz, 30. 03. bis 01. 04. 2011], Eigenverl, Chemnitz, (2011).

Fetching data from Crossref.
This may take some time to load.