Evaluation of Different Hybrid Material Systems and Systematic Analysis of their Physical Mechanisms in Terms of Fatigue


Article Preview

Hybrid material systems are designed by the specific combination of different materials. As a result, expanded property profiles can be achieved, which would not be possible with monolithic material solutions. For lightweight, high strength and high rigidity, complex shaped structural components, which are used in the automotive industry and in aerospace, hybrid material systems offer an outstanding potential. A comprehensive understanding regarding the interaction of the individual components of the hybrid material is of great importance for a more efficient design of future structures. In this work, existing hybrid solutions for industrial applications and those, which are subject of current research, are analyzed and categorized first. Intrinsic and extrinsic material combinations are considered at different levels, ranging from hybrid laminates on shell level to complex hybrid structures on component level. Based on the situation analysis, different hybrid solutions are evaluated and compared considering the requirements of the automotive industry. Furthermore, the associated physical mechanisms which are responsible for the respective property profile are considered and explained systematically. The long-term objective of the work is to establish a methodology to derive the necessary physical mechanisms and, based on that, to derive optimal hybrid solutions for desired property profiles.



Materials Science Forum (Volumes 825-826)

Edited by:

Christian Edtmaier and Guillermo Requena




D. Hummelberger et al., "Evaluation of Different Hybrid Material Systems and Systematic Analysis of their Physical Mechanisms in Terms of Fatigue", Materials Science Forum, Vols. 825-826, pp. 473-481, 2015

Online since:

July 2015




* - Corresponding Author

[1] D. Nestler, Beitrag zum Thema: Verbundwerkstoffe - Werkstoffverbunde - Status quo und Forschungsansätze, first edition, Universitätsverlag der TU Chemnitz, (2014).

[2] J. Schijve, H. T. M. van Lipzig, G. F. J. A. van Gestel, and A.H.W. Hoeymakers, Fatigue properties of adhesive-bonded laminated sheet material of aluminum alloys, Engineering Fracture Mechanics Vol. 12 (1979) 561-579.

DOI: https://doi.org/10.1016/0013-7944(79)90098-5

[3] J. Schijve, Fatigue of aircraft materials and structures, Fatigue Vol. 16 Nr. 1 (1994) 21-32.

[4] J. Schijve, Development of fibre-metal laminates, ARALL and GLARE, new fatigue resistant materials, Report LR-715 Delft University of Technology (January 1993).

[5] W. J. Mills, and R. W. Hertzberg, The effect of sheet thickness on fatigue crack retardation in 2024-t3 aluminum alloy, Engineering Fracture Mechanics Vol. 7 (1975) 705-711.

DOI: https://doi.org/10.1016/0013-7944(75)90026-0

[6] D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski, and W.H. Hung, Jr, Mechanical behavior of laminated metal composites, International Materials Reviews Vol. 41 No. 5 (1996) 169-197.

DOI: https://doi.org/10.1179/imr.1996.41.5.169

[7] J. Wadsworth, and D. R. Lesuer, Ancient and modern laminated composites – from the Great Pyramid of Gizeh to Y2K, Materials Characterization Vol. 45 (2000) 289 - 313.

DOI: https://doi.org/10.1016/s1044-5803(00)00077-2

[8] R. O. Ritchie, Weikang Yu, and R. J. Bucci, Fatigue crack propagation in ARALL® laminates: measurement of the effect of crack-tip shielding from crack bridging, Engineering Fracture Mechanics Vol. 32 No. 3 (1989) 361-377.

DOI: https://doi.org/10.1016/0013-7944(89)90309-3

[9] R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, fourth edition, Wiley, New York, (1996).

[10] R. O. Ritchie, and J. Lankford, Small Fatigue Cracks: A Statement of the Problem and Potential Solutions, Materials Science and Engineering Vol. 84 (1986) 11-16.

DOI: https://doi.org/10.1016/0025-5416(86)90217-x

[11] K. S. Chan, M. Y. He, and J. W. Hutchinson, Cracking and stress redistribution in ceramic layered composites, Materials Science and Engineering Vol. A167 (1993) 57-64.

DOI: https://doi.org/10.1016/0921-5093(93)90337-e

[12] M. C. Shaw, D. B. Marshall, B. J. Dalgleish, M. S. Dadkhah, M. Y. He, and A. G. Evans, Fatigue crack growth and stress redistribution at interfaces, Acta metal. mater. Vol. 42 No. 12 (1994) 4091-4099.

DOI: https://doi.org/10.1016/0956-7151(94)90187-2

[13] R. Marrisen, ARALL (Aramidfaserverstärkter Aluminiumschicht-Verbundwerkstoff) – Ein neuer Hybrid-Verbundwerkstoff mit besonderen Schwingfestigkeitseigenschaften, Zeitschrift für Werkstofftechnik Vol. 14 (1983) 278-283.

DOI: https://doi.org/10.1002/mawe.19830140807

[14] R. Marrisen, Fatigue crack growth in ARALL - A hybrid aluminium-aramid composite material - Crack growth mechanisms and quantitative predictions of the crack growth rates, Thesis Delft University of Technology (June 1988).

[15] R. C. Alderliesten, Fatigue Crack Propagation and Delamination Growth in Glare, Delft University Press, May (2005).

[16] R. C. Alderliesten, Designing for damage tolerance in aerospace: A hybrid material, Materials and Design Vol. 66 (2015) 421-428.

DOI: https://doi.org/10.1016/j.matdes.2014.06.068

[17] R. C. Alderliesten, On crack tunneling and plane-strain delamination in laminates, International Journal of Fracture Vol. 148 No. 4 (2007) 401-414.

DOI: https://doi.org/10.1007/s10704-008-9212-8

[18] R. C. Alderliesten, and A. Vlot, Fatigue crack growth modelling in GLARE, ICCM-13 (2001).

[19] C. T. Lin, and P. W. Kao, Effect of fibre bridging on the fatigue crack propagation in carbon fibre-reinforced aluminum laminates, Materials Science and Engineering Vol. A190 (1995) 65-73.

DOI: https://doi.org/10.1016/0921-5093(94)09613-2

[20] C. T. Lin, P. W. Kao, and F. S. Yang, Fatigue behavior of carbon fibre-reinforced aluminum laminates, Composites Vol. 22 No. 2 (1991) 135-141.

DOI: https://doi.org/10.1016/0010-4361(91)90672-4

[21] R. Rodi, G. S. Wilson, R. C. Alderliesten, and R. Benedictus, The effects of the fibre bridging on the entire strain field of fatigue cracks in fibre metal laminates, 17th International Conference on Composite Materials, ICCM-17 (2009).

[22] R. Rodi, R. C. Alderliesten, and R. Benedictus, An experimental approach to investigate detailed failure mechanisms in fibre metal laminates, 25th ICAF Symposium - Rotterdam (2009).

DOI: https://doi.org/10.1007/978-90-481-2746-7_28

[23] G. Lawcock, L. Ye, Y. -W. Mai, and C. -T. Sun, The effect of adhesive bonding between aluminum and composite prepreg on the mechanical properties of carbon-fibre reinforced metal laminates, Composites Science and Technology Vol. 57 (1997) 35-45.

DOI: https://doi.org/10.1016/s0266-3538(96)00107-8

[24] L. B. Vogelesang, and J. W. Gunnink, ARALL: A Materials Challenge for the next Generation of Aircraft, Materials & Design Vol. 7 No. 6 (1986) 287-300.

DOI: https://doi.org/10.1016/0261-3069(86)90098-1

[25] T. Sinmazcelik, E. Avcu, M. Ö. Bora, and O. Coban, A review: Fibre metal laminates, background, bonding typer and applied test methods, Materials & Design Vol. 32 (2011) 3671-3685.

DOI: https://doi.org/10.1016/j.matdes.2011.03.011

[26] E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, A Review on the Development and Properties of Continuous Fibre/epoxy/aluminum Hybrid Composites for Aircraft Structures, Materials Research Vol. 9 No. 3 (2006) 247-256.

DOI: https://doi.org/10.1590/s1516-14392006000300002

[27] M. Gupta, R. C. Alderliesten, and R. Benedictus, Crack paths in fibre metal laminates: Role of fibre bridging, Engineering Fracture Mechanics Vol. 108 (2013) 183-194.

DOI: https://doi.org/10.1016/j.engfracmech.2013.03.020

[28] P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y. -W. Mai, and B. J. Hockey, Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: I, Experimental Study on Alumina, Journal of the American Ceramic Society Vol. 70 No. 4 (1987).

DOI: https://doi.org/10.1111/j.1151-2916.1987.tb04982.x

[29] Y. -W. Mai, and B. R. Lawn, Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II, Theoretical Fracture Mechanics Model, Journal of the American Ceramic Society Vol. 70 No. 4 (1987) 289-294.

DOI: https://doi.org/10.1111/j.1151-2916.1987.tb04983.x

[30] G. S. Wilson, R. C. Alderliesten, and R. Benedictus, A generalized solution to the crack bridging problem of fibre metal laminates, Engineering Fracture Mechanics Vol. 105 (2013) 65-85.

DOI: https://doi.org/10.1016/j.engfracmech.2013.03.008

[31] G. S. Wilson, Fatigue Crack Growth Predication for generalized fibre metal laminates and hybrid materials, Thesis Delft University of Technology (June 2013).

[32] D. Broek, The Practical Use of Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, (1988).

[33] D. Broek, Elementary engineering fracture mechanics, Martinus Nijhoff Publishers, The Hague, (1984).

[34] D. Gross, and T. Seelig, Bruchmechanik - Mit einer Einführung in die Mikromechanik, Springer-Verlag Berlin Heidelberg, 4. Auflage, (2006).

[35] C. E. Harris, and D. H. Morris, Fracture Behavior of Thick, Laminated Graphite/Epoxy Composites, NASA Contractor Report 3784 (March 1984).

[36] C. E. Harris, and D. H. Morris, The Effects of Laminate Thickness on the Fracture Behavior of Composite Laminates, Composite Structures Vol. 2 (1983) 511-524.

DOI: https://doi.org/10.1007/978-94-009-6640-6_36

[37] Y. -L. Kang, Z. -F. Zhang, H. -W. Wang, and Q. -H. Qin, Experimental investigations of the effect of thickness on fracture toughness of metallic foils, Materials Science and Engineering Vol. A394 (2005) 312-319.

[38] D. R. Bloyer, K. T. Venkateswara Rao, and R. O. Ritchie, Laminated Nb/Nb3Al composites: effect of layer thickness on fatigue and fracture behavior, Materials Science and Engineering Vol. A239-240 (1997) 393-398.

DOI: https://doi.org/10.1016/s0921-5093(97)00608-4

[39] J. D. M. Costa, and J. A. M. Ferreira, Effect of stress ratio and specimen thickness on fatigue crack growth of CK45 steel, Theoretical and Applied Fracture Mechanics Vol. 30 (1998) 65-73.

DOI: https://doi.org/10.1016/s0167-8442(98)00044-5

[40] C. M. Hudson, and J. C. Newman, Jr., Effect of specimen thickness on fatigue toughness of 7075-T6 and 7178-T6 aluminum alloys, NASA Report TN D-7173 (April 1973).

[41] M. Brillhart, and J. Botsis, Fatigue fracture behavior of PEEK: 2. Effects of thickness and temperature, Polymer Vol. 33 No. 24 (1992) 5225-5232.

DOI: https://doi.org/10.1016/0032-3861(92)90805-7

[42] A. Vlot, and J. V. Gunnink, Fibre Metal Laminates – An introduction, Springer Netherlands, 1. Auflage, (2001).