Development of a Continuous Cooling Transformation Diagram for an Al-Zn-Mg Alloy Using Dilatometry


Article Preview

To develop CCT diagram using DSC requires the use of multiple devices in order to measure across the range of cooling rates required to develop the diagram. In the current work one dilatometer is used to characterize the precipitation reactions of the AA7020 alloy. Precipitation and dissolution reactions resulted in changes in the rate of change in the coefficient of thermal expansion. This was used to determine the start and finish temperatures of the MgZn2 precipitation reaction and produce the CCT diagram. Good agreement was found between the results of this technique and DSC results from the literature.



Materials Science Forum (Volumes 828-829)

Edited by:

H.K. Chikwanda and S. Chikosha




M. Kumar et al., "Development of a Continuous Cooling Transformation Diagram for an Al-Zn-Mg Alloy Using Dilatometry", Materials Science Forum, Vols. 828-829, pp. 188-193, 2015

Online since:

August 2015




* - Corresponding Author

[1] O. Kessler, R. von Bargen, F. Hoffmann and H. -W. Zoch. Continuous cooling transformation (CCT) diagram of aluminum alloy Al-4. 5Zn-1Mg, Mater. Sci. Forum, 519 - 521(2006) 1467–1472.


[2] Y. Zhang, B. Milkereit, O. Kessler, C. Schick and P. Rometsch, Development of continuous cooling precipitation diagrams for aluminum alloys AA7150 and AA7020, J. Alloy Compd, 584 (2014) 581 – 589.


[3] A. Hayounea and D. Hamana, Structural evolution during non-isothermal ageing of a dilute Al–Cu alloy by dilatometric analysis, J. Alloy Compd, 474 (2009) 118–123.


[4] L. Hadjadj, R. Amira and M. Bouchear, Comparative study of the phenomena of precipitation in Al-Zn-Mg alloy by the differential scanning calorimetric and the dilatometry and interpretation of dilatometric effects, Int. J. Mod Phys B, 26 (2012).


[5] M. I. Daoudi, A. Triki, A. Redjaimia and C. Yamina, The determination of the activation energy varying with the precipitated fraction of β metastable phase in an Al-Mg-Si alloy using non-isothermal dilatometry, Thermochim. Acta, 577 (2014) 5-10.


[6] A. Deschamps, A. Bigot, F. Livet, P. Auger, Y. Brechet and D. Blavette, A comparative study of precipitate composition and volume fraction in an Al-Zn-Mg alloy using tomographic atom probe and small-angle x-ray scattering, Philos. Mag. A, 81 (2001).


[7] D. Godard, P. Archambault, E. Aeby-Gautier and G. Lapasset, Precipitation sequences during quenching of the AA7010 alloy, Acta Mater., 50 (2002) 2319 – 2329.


[8] A. Deschamps, G. Texier, S. Ringeval and L. Delfaut-Durut, Influence of cooling rate on the precipitation microstructure in a medium strength Al–Zn–Mg alloy, Mater. Sci. Engg. A, 501 (2009) 133–139.


[9] P. Schloth, J. N. Wagner, J. L. Fife, A. Menzel, J. -M. Drezet and H. Van Swygenhoven, Early precipitation during cooling of an Al-Zn-Mg-Cu alloy revealed by in situ small angle x-ray scattering, " Appl. Phys. Lett., 105 (2014) 101908-1-4.


[10] L. Hadjadj, R. Amira, D. Hamana and A. Mosbah, Characterization of precipitation and phase transformations in Al–Zn–Mg alloy by the differential dilatometry, J. Alloy Compd, 462 (2008) 279–283.


[11] L. Yuan, H. Ji and D. Shan, Effect of cohesive energy on thermal expansion behavior of T6 tempered 7A09 aluminum alloy, J. Alloy. Compd, 513 (2012) 546 – 551.


[12] B. S. Mazouz Hamoudi and M. T. Bouziane, Influence of thermomecanical treatments on the properties of Al-5. 8%Zn-2. 7%Mg alloy, Mater. Sci. Appli. 3 (2012) 509–512.


[13] H. Ji, L. Yuan, and D. Shan, Effect of microstructure on thermal expansion coefficient of 7A09 aluminum alloy, J. Mater. Sci. Technol., 27 (2011) 797 – 801.