Synthesis and Characterization of Manganese Substituted Cerium Oxide Nanoparticles by Microwave Refluxing Method

Abstract:

Article Preview

Nanocrystalline MnxCe1-xO2 (0 ≤ x ≤ 0.5) powders have been synthesized by microwave refluxing method. XRD, Raman spectroscopy and TEM analysis confirm the substitution of Mn in cerium oxide to a large extent. With increased Mn content, the crystallite size and lattice parameter found to be decreased. In addition, shifting of Raman main band towards lower frequency side was also observed with increased Mn. This could be attributed to the distortion of lattice of CeO2 due to the lattice strain induced by substitution of Mn.

Info:

Periodical:

Materials Science Forum (Volumes 830-831)

Edited by:

P. Ramesh Narayanan and S.V.S. Narayana Murty

Pages:

608-611

DOI:

10.4028/www.scientific.net/MSF.830-831.608

Citation:

S. K. Alla et al., "Synthesis and Characterization of Manganese Substituted Cerium Oxide Nanoparticles by Microwave Refluxing Method", Materials Science Forum, Vols. 830-831, pp. 608-611, 2015

Online since:

September 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials, Catal. Rev. Sci. Eng. 38(1996), 439-520.

DOI: 10.1080/01614949608006464

[2] B. M. Weckhuysen, M. P. Rosynek, J. H. Lunsford, Destructive adsorption of carbon tetra-chloride on lanthanum andcerium oxides, Phys. Chem. Chem. Phys. 1(1999), 3157-3162.

DOI: 10.1039/a901847f

[3] Y. M. Chiang, E. B. Lavik, I. Kosacki and H. L. Tuller, Defect and transport properties of Nanocrystalline, CeO2−x, Appl. Phys. Lett. 69(1996), 185-187.

DOI: 10.1063/1.117366

[4] S. Tsunekawa, T. Fukuda and A. Kasuya, , Blue shift in ultraviolet absorption spectra of mono-disperse CeO 2−x nanoparticles, Appl. Phys. 87(2000), 1318-1321.

DOI: 10.1063/1.372016

[5] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh and C. N. R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides, Phy. Rev. B 74 (2006), 161306-161309.

DOI: 10.1103/physrevb.74.161306

[6] F. Yang, J. Wei, W. Liu, J. Guo and Y. Yang, Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatileapproach, Mater. Chem. A 2(2014), 5662-5667.

DOI: 10.1039/c3ta15253g

[7] N. S. Ferreira and M. A. Macêdo, Cr-doping induced ferromagnetism in CeO2-δ nopowders, Adv. Mat. Res. 975 (2014), 42-49.

[8] X.B. Chen, G.S. Li, Y.G. Su, X.Q. Qiu, L.P. Li and Z.G. Zou, Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals withnonmagnetic Ca2+doping, Nanotechnology 20(2009).

DOI: 10.1088/0957-4484/20/11/115606

[9] L. Bi, Hyun-Suk Kim, G. F. Dionne, S.A. Speakman, D. Bono and C. A. Ross, Structural, magnetic, and magneto-optical properties of Co-doped CeO2 − δ films, Appl. Phys. 103(2008).

DOI: 10.1063/1.2833839

[10] C. Xia, C. Hu,P. Chen, B. Wan, X. He, Y. Tian, Magnetic properties and photoabsorption of the Mn-doped CeO2nanorods, Mat. Res. Bul. 45 (2010) 794-798.

DOI: 10.1016/j.materresbull.2010.03.015

[11] S. Phokha, S. Pinitsoontorn, S. Maensiri, Structure and magnetic properties of mono-disperse Fe3+- doped CeO2 nanospheres, Nano-Micro Lett. 5(2013), 223-233.

DOI: 10.5101/nml.v5i4.p223-233

[13] N. Paunovic, Z. Dohcevic-Mitrovic, RaresxScurtu, S. Askrabic, M. Prekajski, B. Matovic and Z. V. Popovi, Suppression of inherent ferromagnetism in Pr-doped CeO2nanocrystals, Nanoscale. 4(2012), 5469-5476.

DOI: 10.1039/c2nr30799e

[14] I. Kosacki, V. Petrovsky, H.U. Anderson, P. Colomban, Raman spectroscopy of nanocrystalline ceria and zirconia thin films, Am. Ceram. Soc. 85 (2002), 2646-2650.

DOI: 10.1111/j.1151-2916.2002.tb00509.x

In order to see related information, you need to Login.