Synthesis and Characterization of Zinc Stannate Nanomaterials by Sol-Gel Method

Abstract:

Article Preview

In this work, zinc stannate (Zn2SnO4) nanomaterials were synthesized as a composite system of zinc oxide and tin oxide by sol-gel via hydrolysis process for 60 hours. The effect of annealing temperature on the structural, optical and electrical performances of zinc stannate nanomaterials has been studied. XRD studies revealed that zinc stannate possess spinel cubic crystal structure and their growth in the preferred orientation (311) with characteristic temperature. The surface morphology of the zinc stannate nanomaterials were obtained by scanning electron microscope (SEM). EDAX and FTIR studies were employed to determine the chemical compositions and functional groups of the zinc stannate respectively. The optical properties of the hydrolysed zinc stannate were analysed by UV-visible and photoluminescence spectroscopy. UV-vis spectra were associated to the optical bandgap with a tunable range of 3.17-3.92 eV. PL spectra exhibit the stable broad blue-green emission around 400-600 nm with various excitation wavelengths. Complex impedance spectra reveal that the resistivity of the prepared zinc stannate nanomaterials is in the order of ~ 105 Ω Cm. Hence, zinc stannate is a promising candidate for DSSC applications.

Info:

Periodical:

Edited by:

Alagarsamy Pandikumar, Nay Ming Huang and Hong Ngee Lim

Pages:

144-157

Citation:

K. A. Bhabu et al., "Synthesis and Characterization of Zinc Stannate Nanomaterials by Sol-Gel Method", Materials Science Forum, Vol. 832, pp. 144-157, 2015

Online since:

November 2015

Export:

Price:

$38.00

[1] O. Vigil, C. M. Ruiz, D. Seuret, V. Bermudez, E. Dieguez, Transparent conducting oxides as selective filters in thermophotovoltaic devices, J. Phys. Condens. Matter 17 (2005) 6377-6384.

DOI: https://doi.org/10.1088/0953-8984/17/41/008

[2] Oliver Kluth, Chitra Agashe, Jurgen Hupkes, Joachim Muler, Bernd Rech, Magnetron sputtered zinc stannate films for silicon thin film solar cells, 3rd world conference on photovoltaic energy conversion, Osaka, Japan, (2003) 1-18.

DOI: https://doi.org/10.1016/s0040-6090(03)00949-0

[3] Seigo Ito, Yuki Makari, Takayuki Kitamura, Yuji Wada, Shozo Yanagida, Fabrication and characterization of mesoporous SnO2/ZnO-composite electrodes for efficient dye solar cells, J. Mater. Chem. 14 (2004) 385-390.

DOI: https://doi.org/10.1039/b311090g

[4] Teresa Lana-Villarreal, Gerrit Boschloo, Anders Hagfeldt, Nanostructured zinc stannate as semiconductor working electrodes for dye sensitized solar cells, J. Phys. Chem. C 111 (2007) 5549-5556.

DOI: https://doi.org/10.1021/jp0678756

[5] Bing Tan, Elizabeth Toman, Yanguang Li, Yiying Wu, Zinc stannate (Zn2SnO4) dye sensitized solar cells, J. Am. Chem. Soc. 129 (2007) 4162-4163.

DOI: https://doi.org/10.1021/ja070804f

[6] Ji Haeng Yu, Gyeong Man Choi, Selective CO gas detection of Zn2SnO4 gas sensor, J. Electroceram. 8 (2002) 249-255.

DOI: https://doi.org/10.1016/s0925-4005(01)00884-x

[7] Aarthy Sivapunniyam, Nitiwiromrat, Myo Tay Zar Myint, Joydeep Dutta, High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate, Sens. Actuat. B Chem. 157 (2011) 232-239.

DOI: https://doi.org/10.1016/j.snb.2011.03.055

[8] Takashi Ogi, Darmawan Hidayat, Ferry Iskandar, Agus Purwanto, kikuo Okuyama, Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis, Adv. Powder. Technol. 20 (2009) 203-209.

DOI: https://doi.org/10.1016/j.apt.2008.09.002

[9] T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan, X. Wu, Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4 and Zn2SnO4, J. Vac. Sci. Technol. A 18 (2000) 2646-2660.

DOI: https://doi.org/10.1116/1.1290371

[10] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc, Chem. Commun. (1999) 15–16.

DOI: https://doi.org/10.1039/a806801a

[11] A. Kurz, M. A. Aegerter, Transparent conducting films in the Zn-Sn-O tie line, J. Sol-Gel Sci. Techn. 31 (2004) 267-271.

DOI: https://doi.org/10.1023/b:jsst.0000048001.35242.4b

[12] Tadatsugu Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol. 20 (2005) S35 – S44.

DOI: https://doi.org/10.1088/0268-1242/20/4/004

[13] Mohammad Reza Vaezi, Advances in Composite materials for Medicine and Nanotechnology, Inteck, (2011).

[14] E. Cetinorgu, S. Goldsmith, Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films, J. Phys D: Appl. Phys. 40 (2007) 5220-5226.

DOI: https://doi.org/10.1088/0022-3727/40/17/031

[15] S. Abboudy, A. AL-Hajri, A. A. AL-Shahrani, M. S. AL-Assiri, Abulnasr, A. Sweyllam, A. W. Brinkman, Influence of substrate temperature on the electrical behavior of zinc stannate thin films deposited by electron beam evaporation technique, Il Nuovo Cimento D 20 (1998).

DOI: https://doi.org/10.1007/bf03036604

[16] Edson Luiz Foletto, Segio Luiz Jahn, Hydrothermal preparation of Zn2SnO4 nanocrystals and photocatalytic degradation of a leather dye, J. Appl. Electrochem. 40 (2010) 59-63.

DOI: https://doi.org/10.1007/s10800-009-9967-2

[17] Lisheng Wang, Xiaozhong Zhang, Xing Liao and Weiguo Yang, A simple method to synthesize single-crystalline Zn2 SnO4 (ZTO) nanowires and their photoluminescence properties, Nanotechnology 16 (2005) 2928 -2931.

DOI: https://doi.org/10.1088/0957-4484/16/12/034

[18] Hongliang Zhu, Deren Yang, Guixia Yu, Hui Zhang, Dalai Jin, Kuihong Yao, Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties, J. Phys. Chem. B 110 (2006) 7631-7634.

DOI: https://doi.org/10.1002/chin.200630236

[19] Hsiu- Fen Lin, Shih-Chieh Liao, Sung Wei Hung, Chen-Ti Hu, Thermal plasma synthesis and optical properties of Zn2SnO4 nanopowders, Mater. Chem. Phys. 117 (2009) 9-13.

DOI: https://doi.org/10.1016/j.matchemphys.2009.05.007

[20] T. Ivetic, M. V. Nikolic, P. M. Nikolic, V. Blagojevic, S. Duric, T. Sreckovic, M. M. Ristic, Investigation of zinc stannate synthesis using photoacoustic spectroscopy, Sci. Sinter. 39 (2007) 229-240.

DOI: https://doi.org/10.2298/sos0702153i

[21] D. R. Uhlmann, G. Teowee, Sol-Gel science and technology: Current state and future prospects, J. Sol-Gel Sci. Techn. 13 (1998) 153-162.

DOI: https://doi.org/10.1023/a:1008692430779

[22] Sunandan Baruah, Joydeep Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv. Mater. 12 (2011).

DOI: https://doi.org/10.1088/1468-6996/12/1/013004

[23] Jae-Wook Lee, Chang – Ha Lee, Synthesis of Zn2SnO4 anode material by using supercritical water in a batch reactor, J. Supercrit. Fluids 55 (2010) 252-258.

DOI: https://doi.org/10.1016/j.supflu.2010.07.003

[24] W. S. Yuan, Y. W. Tian, G. Q. Liu, Synthesis and electrochemical properties of pure phase Zn2SnO4 and composite Zn2SnO4/C, J. Alloys Compd. 506 (2010) 683 – 687.

DOI: https://doi.org/10.1016/j.jallcom.2010.07.042

[25] Natasa S. Nikolic, Tatjana V. Sreckovic, Momcilo M. Ristic, The influence of mechanical activation on zinc stannate spinel formation, J. Eur. Ceram. Soc. 21 (2001) 2071-(2074).

DOI: https://doi.org/10.1016/s0955-2219(01)00174-1

[26] Rama Singh, Avadhesh Kumar Yadav, Chandkiram Gautam, Synthesis and humidity sensing investigations of nanostructured ZnSnO3, J Sens. Technol. 1 (2011) 116-124.

DOI: https://doi.org/10.4236/jst.2011.14016

[27] A. R. Babar, S. B. Kumbhar, S. S. Shinde, A. V. Moholkar, J. H. Kim, K. Y. Rajpure, Structural, compositional and electrical properties of co-precipitated zinc stannate, J. Alloys Compd. 509 (2011) 7508-7514.

DOI: https://doi.org/10.1016/j.jallcom.2011.04.105

[28] O. A. Fouad, G. Glaspell. M. S. El-shall, Growth and characterization of ZnO, SnO2 and ZnO/SnO2 nanostructures from the vapor phase, Top. Catal. 47 (2008) 84-96.

DOI: https://doi.org/10.1007/s11244-007-9033-4

[29] Yu-Chung Chen, Yen-Hwei Chang, Bin-Siang Tsai, Photoluminescent Properties of Europium-Activated Zn2SnO4 Phosphors, Materials Transactions 45 (2004) 1684-1686.

DOI: https://doi.org/10.2320/matertrans.45.1684

[30] M. Parthibavarman, K. Vallalperuman, C. Sekar, G. Rajarajan, T. Logeswaran, Retraction notice to Microwave synthesis, characterization and humidity sensing properties of single crystalline Zn2SnO4 nanorods., VAC 86/10 - 1488-1493, Vacuum 86 (2012).

DOI: https://doi.org/10.1016/j.vacuum.2013.02.012

[31] L. P. Teo, M. H. Buraidah. A. F. M. Nor. S. R. Majid, Conductivity and dielectric studies of Li2SnO3, Ionics 18 (2012) 655-665.

DOI: https://doi.org/10.1007/s11581-012-0667-2

[32] A. Al-Shahrani, S. Abboudy, A. W. Brinkman, Absence of the Coulomb gap at the Fermi level in the variable-range hopping regime of zinc stannate polycrystalline systems, J. Phys. D: Appl. Phys. 29 (1996) 2165-2169.

DOI: https://doi.org/10.1088/0022-3727/29/8/016