Luminescence Properties of a Novel Blue-Emitting Phosphor NaBaBO3:Tm3+,K+


Article Preview

A novel blue-emitting phosphor NaBaBO3 doped with Tm3+ was prepared using a conventional high temperature solid-state reaction method. Its crystal structure and luminescence properties were studied. Photoluminescence measurements indicate that the phosphor features a satisfactory blue performance due to the 1D23F4 transition of Tm3+ with the highest photoluminescence intensity located at 460 nm excited by 359 nm near-ultraviolet (NUV) light. In addition, the concentration of Tm3+ was adjusted in order to obtain the optimum emission intensity. When the Tm3+ concentration in NaBaBO3 is 6.0 mol% the maximum intensity can be obtained. The concentration quenching occurs when Tm3+ concentration is beyond 6.0 mol% and the concentration quenching mechanism can be explained by the dipole–dipole interaction. The measured chromaticity coordinate for the NaBaBO3:Tm3+phosphor under 359 nm excitation is determined to be (0.1470, 0.1090). The present work suggests that the NaBaBO3:Tm3+,K+ phosphor is a promising blue-emitting material for NUV white light-emitting diodes.



Edited by:

Xiaopeng Xiong and Ran Zhang




J. H. Zheng et al., "Luminescence Properties of a Novel Blue-Emitting Phosphor NaBaBO3:Tm3+,K+", Materials Science Forum, Vol. 833, pp. 39-43, 2015

Online since:

November 2015




* - Corresponding Author

[1] Z.H. Ju, R.P. Wei, J.X. Ma, C.R. Pang, W. -S. Liu, J. Alloy. Compd. Vol. 507 (2010), pp.133-136.

[2] L. Guerbous, M. Derbal, J.P. Chaminade, J. Lumin. Vol. 130 (12) (2010) pp.2469-2475.

[3] P. You, G. Yin, X. Chen, B. Yue, Z. Huang, X. Liao, Y. Yao, Opt. Mater. Vol. 33 (11) (2011) pp.1808-1812.

[4] J. Wang, J. Wang, P. Duan, J. Lumin. Vol. 145 (2014) pp.1-5.

[5] J. Zheng, Q. Cheng, W. Chen, Z. Guo, C. Chen, ECS J. Solid. State. Sc. Vol. 4(5) (2015) R72-R77.

[6] Z. -w. Zhang, Y. -s. Peng, X. -h. Shen, J. -p. Zhang, S. -t. Song, Q. Lian, J. Mater. Sci. Vol. 49 (6) (2014) pp.2534-2541.

[7] X. -Y. Sun, J. -C. Zhang, X. -G. Liu, L. -W. Lin, Ceram. Int. Vol. 38 (2) (2012) pp.1065-1070.

[8] W. -R. Liu, C. -H. Huang, C. -P. Wu, Y. -C. Chiu, Y. -T. Yeh, T. -M. Chen, J. Mater. Chem. Vol. 21 (19) (2011) p.6869.

[9] J. Zheng, L. Ying, Q. Cheng, Z. Guo, L. Cai, Y. Lu, C. Chen, Mater. Res. Bull. Vol. 64 (2015) pp.51-54.

[10] F. Yang, H. Ma, Y. Liu, Q. Liu, Z. Yang, Y. Han, Ceram. Int. Vol. 39 (2) (2013) pp.2127-2130.

[11] J. Sun, G. Shen, X. Wang, D. Shen, Mater. Lett. Vol. 93 (2013) pp.169-171.

[12] P. Li, Z. Wang, Z. Yang, Q. Guo, X. Li, Mater. Lett. Vol. 63 (9-10) (2009) pp.751-753.

[13] L. Cai, L. Ying, J. Zheng, B. Fan, R. Chen, C. Chen, Ceram. Int. Vol. 40 (5) (2014) pp.6913-6918.

[14] B. Han, J. Zhang, P. Li, H. Shi, JETP Lett. Vol. 99 (9-10) (2014) p.647.

[15] H. -J. Lin, Y. -S. Chang, Electrochem. Solid. St. Vol. 10 (7) (2007) p. J79.

[16] R. Wang, J. Xu, C. Chen, Mater. Lett. Vol. 68 (2012) pp.307-309.

[17] W. Zeng, Y. Wang, S. Han, W. Chen, G. Li, Y. Wang, Y. Wen, J. Mater. Chem. C Vol. 1 (17) (2013) p.3004.

[18] A.A. Reddy, S. Das, A. Goel, R. Sen, R. e. Siegel, L. s. Mafra, G.V. Prakash, J.M.F. Ferreira, AIP Adv. Vol. 3 (2) (2013) p.022126.

[19] J. -M. Tu, D.A. Keszler, Acta Crystallogr. C Vol. 51 (10) (1995) p.1962-(1964).

[20] R.P. Rao, J. Lumin. Vol. 113 (3-4) (2005) pp.271-278.

[21] G. Blasse, Phys. Lett. A Vol. 28 (6) (1968) pp.444-445.

[22] D. Dexter, J.H. Schulman, J. Chem. Phys. Vol. 22 (6) (1954) pp.1063-1070.

[23] E. Fred Schubert, Light-Emitting Diodes, 2nd ed., (Cambridge University Press, 2006 (chapter 17) p.292. ).