Electrotransport Properties of the La(Fe1-хCoх)Siy Compounds


Article Preview

We have measured the resistivity and Hall effect of La (Fe1-хCoх)Siy polycrystals in the temperature range 100 K < T < 340 K and applied magnetic fields of up to 5 T. The anomalous Hall effect (AHE) is very large and varies quite linearly with the longitudinal resistivity ρ. AHE in these compounds is determined by the contribution from the external screw scattering mechanism.



Edited by:

Vasiliy Buchelnikov, Vladimir Sokolovskiy and Mikhail Zagrebin




D. Karpenkov et al., "Electrotransport Properties of the La(Fe1-хCoх)Siy Compounds", Materials Science Forum, Vol. 845, pp. 50-55, 2016

Online since:

March 2016




[1] S. Fujieda, A. Fujita, K. Fukamichi, Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds, Appl. Phys. Lett. 81 (2002) 1276.

DOI: 10.1063/1.1498148

[2] O. Gutfleisch, A. Yan, K. -H. Müller, Large magnetocaloric effect in melt-spun LaFe13−xSix, J. Appl. Phys. 97 (2005) 10M305.

DOI: 10.1063/1.1847871

[3] F. X. Hu, B. G. Shen, J. R. Sun, X. X. Zhang, Great magnetic entropy change in La(Fe, M)13 (M=Si, Al) with Co doping, Chin. Phys., 9 (2000) 550.

[4] F.X. Hu, J. Gao, X.L. Qian X.L., M. Ilyn, A.M. Tishin, J.R. Sun, B.G. Shen, Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1−xCox)11. 9Si1. 1 / J. Appl. Phys., 97 (2005) 10M303.

DOI: 10.1063/1.1847071

[5] M. Katter, V. Zellmann, G.W. Reppel and K. Uestuener, Magnetocaloric properties of La(Fe, Co, Si)13 bulk material prepared by powder metallurgy, IEEE Trans. Magn., 44 (2008) 3044.

DOI: 10.1109/tmag.2008.2002523

[6] J. Liu, , Maria Krautz, Konstantin Skokov, Thomas George Woodcock, Oliver Gutfleisch, Acta Mater., 59 (2011) 3602.

[7] R. Karplus и J. M. Luttinger, Hall Effect in Ferromagnetics, Phys. Rev., 95 (1954) 1154–1160.

DOI: 10.1103/physrev.95.1154

[8] J. Smith, The spontaneous hall effect in ferromagnetics I, Physica , 21, (1955), 877–887.

[9] J. Smith, The spontaneous hall effect in ferromagnetics II, Physica, 24 (1958), 39–51.

[10] L. Berger Side-Jump Mechanism for the Hall Effect of Ferromagnets, Phys. Rev. B, 2 (1970) 4559.

[11] J. M. Luttinger, Theory of the Hall Effect in Ferromagnetic Substances, Phys. Rev., 112 (1958) 739-751.

DOI: 10.1103/physrev.112.739

[12] TadaoKasuya, Electrical Resistance of Ferromagnetic Metals, Progress of Theoretical Physics, 16 (1956) 1.

[13] A. H. Wilson, The Theory of Metals, Cambridge University Press, Cambridge, England, (1953) 287.

[14] P.G. de Gennes and J. Friedel Anomalies de résistivité dans certains métaux magníques, J. Phys. Chem. Solids, 4 (1958) 71.

DOI: 10.1016/0022-3697(58)90196-3

[15] M.E. Fisher and J.S. Langer Resistive Anomalies at Magnetic Critical Points, Phys. Rev. Lett. 20 (1968) 665.

DOI: 10.1103/physrevlett.20.665

[16] D.J. Kim Electrical Resistance in Ferromagnetic Metals and Dilute Alloys near the Curie Temperature, Progr. Theor. Phys., 31 (1964) 921.

DOI: 10.1143/ptp.31.921

[17] M.P. Kawatra, S. Skalski, J.A. Mydosh and J.L. Budnick, Effect of the Molecular Field on the Electrical Resistivity Near a Magnetic Transition: GdNi2, Phys. Rev. Lett., 23 (1969) 83.

DOI: 10.1103/physrevlett.23.83

[18] C. Zeng, Y. Yao, Q. Niu, H. H. Weitering Linear magnetization dependence of the intrinsic anomalous Hall effect , Physical Review Letters, 96 (2006) 3 037204.

DOI: 10.1103/physrevlett.96.037204

[19] B. C. Sales, R. Jin, and D., Mandrus Orientation dependence of the anomalous Hall resistivity in single crystals of Yb14MnSb11, Physical Review B, 77 (2008) 2 024409.

Fetching data from Crossref.
This may take some time to load.