Ferroelectric and Magnetic Domain Walls in High Temperature Multiferroic Films and Heterostructures

Abstract:

Article Preview

In the last decade, considerable attention has been focused on the search of new multiferroic materials and the ways of improvement of their magnetoelectric properties. In this short review, we survey the progress in study of multiferroics focusing the high temperature multiferroic bismuth ferrite and rare earth iron garnets. We discuss the recent results of investigation of domain walls in multiferroics, concentrating the most important magnetoelectric manifestations (electric polarization and magnetization), and the pinning effect appearing as clamping of ferroelectric and magnetic domain walls.

Info:

Periodical:

Edited by:

Vasiliy Buchelnikov, Vladimir Sokolovskiy and Mikhail Zagrebin

Pages:

7-12

DOI:

10.4028/www.scientific.net/MSF.845.7

Citation:

Z.V. Gareeva et al., "Ferroelectric and Magnetic Domain Walls in High Temperature Multiferroic Films and Heterostructures", Materials Science Forum, Vol. 845, pp. 7-12, 2016

Online since:

March 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] G.A. Smolenskii, I.E. Chupis. Ferroelectromagnets, Usp. Fiz. Nauk 137 (1982) 415.

DOI: 10.3367/ufnr.0137.198207b.0415

[2] H. Schmid, J.M. Trooster, J. M. Mossbauer effect and optical evidence for new phase transitions in Fe-Cl, Fe-Br, Fe-I, Co-Cl and Zn-Cl boracite. Sol. St. Commun. 5 (1967) 31–35.

DOI: 10.1016/0038-1098(67)90041-5

[3] I.E. Dzyaloshinskii, On the magnetoelectrical effect in antiferromagnets, Zh. Exp. Teor. Fiz. 37 (1959) 881.

[4] D.N. Astrov, Magnetoelectric effect in chromium oxide, Zh. Exp. Teor. Fiz. 40 (1961) 1035.

[5] N. A. Spaldin, S. W. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today, 63 (2010), 38-43.

[6] Y. Tokura, S. Seki, Multiferroics with spiral spin orders, Advanced materials 22. 14 (2010) 1554-1565.

DOI: 10.1002/adma.200901961

[7] A.M. Kadomtseva et al. Physica B. Condensed Matter 211(1) (1995) 327.

[8] J. -P. Rivera, A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics, Eur. Phys. J. B 71 (2009) 299 –313.

DOI: 10.1140/epjb/e2009-00336-7

[9] S.L. Hou, N. Blombergen, Paramagnetoelectric Effects in NiS O 4· 6 H 2 O, Phys. Rev. 138 (1965) A1218.

[10] E. Ascher, Higher-order magneto-electric effects, Phil. Mag. 17 (1968) 149-157.

[11] T. O'Dell, An induced magneto-electric effect in yttrium iron garnet, Philosophical Magazine 16 (1967) 487.

DOI: 10.1080/14786436708220859

[12] A. K. Zvezdin and A. A. Mukhin, Magnetoelectric interactions and phase transitions in a new class of multiferroics with improper electric polarization, JETP Letters 88 (2008) 505.

DOI: 10.1134/s0021364008200083

[13] Y. Tokunaga, Y. Taguchi, T. -H. Arima, and Y. Tokura, Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nature Physics 8 (2012) 838.

DOI: 10.1038/nphys2405

[14] A. Logginov, et al. Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl. Phys. Lett. 93 (2008) 182510.

DOI: 10.1063/1.3013569

[15] A. Popov, D. Plokhov, and A. Zvezdin, Symmetry and magnetoelectric effects in garnet crystals and films Phys. Rev. B 87 (2013) 024413.

[16] P. Barone et al. Mechanism of ferroelectricity in d 3 perovskites: A model study,  Phys. Rev. B 84 (2011) 134101.

[17] X. F. Hao et al. Structural and ferroelectric transitions in magnetic nickelate PbNiO3, New J. Phys. 16 (2014) 015030.

DOI: 10.1088/1367-2630/16/1/015030

[18] L. W. Martin, et al. Multiferroics and magnetoelectrics: thin films and nanostructures, Nano Lett. 8, 2050 (2008).

[19] M. B Holcomb, et al. Probing the evolution of antiferromagnetism in multiferroics. Phys. Rev. B, 81(13), 134406 (2010).

[20] Q. He et al., Magnetotransport at DomainWalls in BiFeO3, Phys. Rev. Lett. 108, 067203 (2012).

[21] E. Hanamura, Y. Tanabe. Ferroelectric and antiferromagnetic domain wall,  J. Phys. Soc. Jap. 72, 2959 (2003).

[22] S. Artyukhin, K.T. Delaney, N. A. Spaldin and M. Mostovoy, Landau theory of topological defects in multiferroic hexagonal manganites, Nature Mat. 13, 42 (2014).

DOI: 10.1038/nmat3786

[23] S. Farokhipoor, et al., Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide, Nature 515, 379 (2014).

[24] A.P. Pyatakov, A.S. Sergeev, F.A. Mikailzade, A.K. Zvezdin Spin flexoelectricity and chiralspinstructures in magnetic films, JMMM 383 (2015) 255–258.

DOI: 10.1002/chin.201524282

[25] A.P. Pyatakov, G.A. Meshkov, A.K. Zvezdin. Electric polarization of magnetic textures: New horizons of micromagnetism. JMMM 324 (2012) 3551–3554.

DOI: 10.1016/j.jmmm.2012.02.087

[26] A. S. Logginov et al. Magnetoelectric Control of Domain Walls in a Ferrite Garnet Film. JETP Letters, 86 (2007) 115–118.

DOI: 10.1134/s0021364007140093

[27] C. Michel, J. Moreau, G. Achenbach, R. Gerson, and W. James, The atomic structure of BiFeO3 , Solid State Commun. 7 (1969) 701.

DOI: 10.1016/0038-1098(69)90597-3

[28] S. Kiselev, R. Ozerov, and G. Zhdanov, Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction, Sov. Phys. Dokl. 7 (1963) 742.

[29] I. Sosnowska, T. Neumaier, and E. Steichele, Spiral magnetic ordering in bismuth ferrite, J. Phys. C 15 (1982) 4835.

DOI: 10.1088/0022-3719/15/23/020

[30] A.V. Zalesskii, et al. JETP 95(1) (2002) 101.

[31] O. Dieguez, P. Aguado-Puente, J. Junquera, and J. Iniguez, Domain walls in a perovskite oxide with two primary structural order parameters: First-principles study of BiFeO3, Phys. Rev. B 87 (2013) 024102.

DOI: 10.1103/physrevb.87.024102

[32] Z. Gareeva, O. Dieguez, J. Iniguez, A. K. Zvezdin, Complex domain walls in BiFeO3. Phys. Rev. B 91 (2015) 060404(R).

[33] S. K. Streiffer, et al. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments, J. Appl. Phys. 83 (1998) 2742.

[34] F. Zavaliche, et al, Multiferroic BiFeO3 films: domain structure and polarization dynamics, Phase Transit. 79 (2006) 991.

[35] C. J. M. Daumont, et al., Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3, Phys. Rev. B 81 (2010) 144115.

[36] J. Přívratská and V. Janovec, Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains, Ferroelectrics 204 (1) (1997) 321.

DOI: 10.1080/00150199708222212

[37] B. Houchmandzadeh, J. Lajzerowicz, and E. K. H. Salje, Relaxations near surfaces and interfaces for first-, second-and third-neighbour interactions: theory and applications to polytypism, J. Phys.: Condens. Matter 4, 9779 (1992).

DOI: 10.1088/0953-8984/4/49/006

[38] M. Daraktchiev, G. Catalan, and J. F. Scott, Landau Theory of Domain Wall magnetoelectricity Phys. Rev. B 81, 224118 (2010).

DOI: 10.1103/physrevb.81.224118

[39] Z. Gareeva and A. Zvezdin, Interacting domain walls in multiferroics. Physica Status Solidi: Rapid Res. Lett. 3 (2009) 79.

[40] Z. Gareeva and A. Zvezdin, Effect of Magnetoelectrical Interactions on the Multiferroic Domain Walls, Phys. Solid State 52 (2010) 1714–1721.

DOI: 10.1134/s1063783410080238

[41] Z. Gareeva and A. Zvezdin, Pinning domain walls in multiferroics, EPL 4 (2010) 1070.

DOI: 10.1209/0295-5075/91/47006

[42] J.F. Scott, Room-temperature multiferroic magnetoelectrics. NPG Asia Materials (2013) 5, e72.

DOI: 10.1038/am.2013.58

[43] A.K. Zvezdin, A.P. Pyatakov, Physics-Uspekhi 52 (8) (2009) 845.

[44] M. J. Cardwell, The Second Order Magnetoelectric Effect in Yttrium Jron GarnetPhys. Stat. sol. (b) 45, 597 (1971).

[45] G. Velleaud, B. Sangare, M. Mercier, and G. Aubert, Magnetoelectric properties of YIG, Solid state comm. 52 (1984) 71.

DOI: 10.1016/0038-1098(84)90721-x

[46] H. Ogawa, et al., A low temperature phase transitions in YIG, J. Phys. Soc. Jap. 56, 452 (1987).

[47] S. Takano, et al. Magnetoelectric effect of YIG at low temperature, J. Phys. Soc. Jap. 58, 1145 (1989).

[48] E. Kita, et al., JMMM 104, 449 (1992).

[49] R. Pisarev, et al., J. Physics: Condensed Matter 5, 8621 (1993).

[50] V. Pavlov, et al. Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films . Phys. Rev. Lett. 78, 2004 (1997).

DOI: 10.1103/physrevlett.78.2004

[51] V. E. Koronovsky, S. M. Ryabchenko, and V. F. Kovalenko, Electromagneto-optical effects on local areas of a ferrite-garnet film, Phys. Rev. B 71, 172402 (2005).

DOI: 10.1103/physrevb.71.172402

[52] Y. Kohara, Y. Yamasaki, Y. Onose, and Y. Tokura, Excess-electron induced polarization and magnetoelectric effect in yttrium iron garnet, Phys. Rev. B 82, 104419 (2010).

DOI: 10.1103/physrevb.82.104419

In order to see related information, you need to Login.