Damping Properties of Magnetically Ordered Shape Memory Alloys


Article Preview

Intermetallic alloys and compounds undergoing diffusionless solid–solid phase transformations are an important class of high-damping materials. Some representatives of these alloys and compounds also possess good magnetic properties. For such materials, a combination of the magnetoelastic coupling and a high mobility of the martensitic variants can bring about new features of the internal friction and allows one to control the damping capacity by an external magnetic field. Here we review damping properties of magnetically ordered shape memory alloys.



Edited by:

Vasiliy Buchelnikov, Vladimir Sokolovskiy and Mikhail Zagrebin




V. V. Khovaylo et al., "Damping Properties of Magnetically Ordered Shape Memory Alloys", Materials Science Forum, Vol. 845, pp. 77-82, 2016

Online since:

March 2016




* - Corresponding Author

[1] M.S. Blanter, I.S. Golovin, H. Neuhäuser, H. -R. Sinning, Internal Friction in Metallic Materials. A Handbook, Springer-Verlag, Berlin, (2007).

[2] I.S. Golovin, Vnutrennee trenie i mekhanicheskaya spektroskopiya metallicheskikh materialov (in Russian), Izdatel'skii dom MISiS, Moscow, (2012).

[3] J. Van Humbeeck, Damping properties of shape memory alloys during phase transformation, J. Phys. IV 6 (1996) 371.

[4] J. Van Humbeeck, Y. Liu, Shape memory alloys as damping materials, Mater. Sci. Forum 327-328 (2000) 331.

DOI: https://doi.org/10.4028/www.scientific.net/msf.327-328.331

[5] J. Van Humbeeck, Shape memory alloys: a materials and a technology, Adv. Eng. Mater. 3 (2001) 837.

[6] J. Van Humbeeck, Damping capacity of thermoelastic martensite in shape memory alloys, J. Alloys Comp. 355 (2003) 58.

DOI: https://doi.org/10.1016/s0925-8388(03)00268-8

[7] S. Kustov, J. Van Humbeeck, Damping properties of SMA, Mater. Sci. Forum 583 (2008) 85.

DOI: https://doi.org/10.4028/www.scientific.net/msf.583.85

[8] A. Cladera, B. Weber, C. Leinenbach, C. Czaderski, M. Shahverdi, M. Motavalli, Iron-based shape memory alloys for civil engineering structures: An overview, Const. Build. Mater. 63 (2014) 281.

DOI: https://doi.org/10.1016/j.conbuildmat.2014.04.032

[9] I. Yoshida, D. Monma, K. Iino, K. Otsuka, M. Asai, H. Tsuzuki, Damping properties of Ti50Ni50-xCux alloys utilizing martensitic transformation, J. Alloys Comp. 355 (2003) 79.

DOI: https://doi.org/10.1016/s0925-8388(03)00280-9

[10] G. Fan, Y. Zhou, K. Otsuka, X. Ren, Ultrahigh damping in R-phase state of Ti-Ni-Fe alloy, Appl. Phys. Lett. 89 (2006) 161902.

DOI: https://doi.org/10.1063/1.2363173

[11] M. Barrado, G.A. López, M.L. Nó, J. San Juan, Composites with ultra high damping capacity based on powder metallurgy shape memory alloys, Mater. Sci. Eng. A 521-522 (2009) 363.

DOI: https://doi.org/10.1016/j.msea.2008.10.075

[12] J. San Juan, M.L. Nó, C.A. Schuh, Nanoscale shape-memory alloys for ultrahigh mechanical damping, Nature Nanotech. 4 (2009) 415.

DOI: https://doi.org/10.1038/nnano.2009.142

[13] Y. Liu, J. Van Humbeeck, On the damping behavior of NiTi shape memory alloy, J. Phys. IV 7 (1997) C5-519.

DOI: https://doi.org/10.1051/jp4:1997582

[14] Here we do not consider dependencies of the internal friction on amplitude and frequency of the applied load, which in the phase transition interval are generally smaller than the dependence of Q-1 on heating/cooling rate.

[15] R.B. Pérez-Sáez, V. Recarte, M.L. Nó, J. San Juan, Anelastic contributions and transformed volume fraction during thermoelastic martensitic transformations, Phys. Rev. B 57 (1998) 5684.

DOI: https://doi.org/10.1103/physrevb.57.5684

[16] J. San Juan, M.L. Nó, Damping behavior during martensitic transformation in shape memory alloys, J. Alloys Comp. 355 (2003) 65.

DOI: https://doi.org/10.1016/s0925-8388(03)00277-9

[17] S.H. Chang, S.K. Wu, Inherent internal friction of B2 ® R and R ® B19¢ martensitic transformations in equiatomic TiNi shape memory alloy, Scripta Mater. 55 (2006) 311.

DOI: https://doi.org/10.1016/j.scriptamat.2006.04.044

[18] C. Seguí, E. Cesari, J. Pons, V. Chernenko, Internal friction behaviour of Ni–Mn–Ga, Mater. Sci. Eng. A 370 (2004) 481.

DOI: https://doi.org/10.1016/j.msea.2003.07.008

[19] Z. Peng, X. Jin, Y. Fan, T.Y. Hsu, S.M. Allen, R.C. O'Handley, Internal friction and modulus changes associated with martensitic and reverse transformations in a single crystal Ni48. 5Mn31. 4Ga20. 1 alloy, J. Appl. Phys. 95 (2004) 6960.

DOI: https://doi.org/10.1063/1.1676056

[20] W.H. Wang, X. Ren, G.H. Wu, Martensitic microstructure and its damping behavior in Ni52Mn16Fe8Ga24 single crystals, Phys. Rev. B 73 (2006) 092101.

[21] I. Aaltio, M. Lahelin, O. Söderberg, O. Heczko, B. Löfgren, Y. Ge, J. Seppälä, S. -P. Hannula, Temperature dependence of the damping properties of Ni–Mn–Ga alloys, Mater. Sci. Eng. A 481-482 (2008) 314.

DOI: https://doi.org/10.1016/j.msea.2006.12.229

[22] I. Aaltio, K.P. Mohanchandra, O. Heczko, M. Lahelin, Y. Ge, G.P. Carman, O. Söderberg, B. Löfgren, J. Seppälä, S. -P. Hannula, Temperature dependence of mechanical damping in Ni–Mn–Ga austenite and non-modulated martensite, Scripta Mater. 59 (2008).

DOI: https://doi.org/10.1016/j.scriptamat.2008.05.005

[23] J. Feuchtwanger, S. Michael, J. Juang, D. Bono, R.C. O'Handley, S.M. Allen, C. Jenkins, J. Goldie, A. Berkowitz, Energy absorption in Ni-Mn-Ga-polymer composites, J. Appl. Phys. 93 (2003) 8528.

DOI: https://doi.org/10.1063/1.1557762

[24] J. Feuchtwanger, M.L. Richard, Y.J. Tang, A.E. Berkowitz, R.C. O'Handley S.M. Allen, Large energy absorption in Ni–Mn–Ga/polymer composites, J. Appl. Phys. 97 (2005) 10M319.

DOI: https://doi.org/10.1063/1.1857653

[25] M. Lahelin, I. Aaltio, O. Heczko, O. Söderberg, Y. Ge, B. Löfgren, S. -P. Hannula, J. Seppälä, DMA testing of Ni–Mn–Ga/polymer composites, Composites A 40 (2009) 125.

DOI: https://doi.org/10.1016/j.compositesa.2008.10.011

[26] S. -P. Hannula, I. Aaltio, Y. Ge, M. Lahelin, O. Sцderberg, Processing and properties of Ni–Mn–Ga magnetic shape memory alloy based hybrid materials, Current Appl. Phys. 12 (2012) S63.

DOI: https://doi.org/10.1016/j.cap.2012.02.020

[27] E. Cesari, V.A. Chernenko, V.V. Kokorin, J. Pons, C. Segui, Internal friction associated with the structural phase transformations in Ni-Mn-Ga alloys, Acta Mater. 45 (1997) 999.

DOI: https://doi.org/10.1016/s1359-6454(96)00244-3

[28] V.A. Chernenko, J. Pons, C. Seguí, E. Cesari, Premartensitic phenomena and other phase transformations in Ni-Mn-Ga alloys studied by dynamical mechanical analysis and electron diffraction, Acta Mater. 50 (2002) 53.

DOI: https://doi.org/10.1016/s1359-6454(01)00320-2

[29] C. Segui, V.A. Chernenko, J. Pons, E. Cesari, V. Khovailo, T. Takagi, Low temperature-induced intermartensitic phase transformations in Ni–Mn–Ga single crystal, Acta Mater. 53 (2005) 111.

DOI: https://doi.org/10.1016/j.actamat.2004.09.008

[30] V.G. Gavriljuk, O. Söderberg, V.V. Bliznuk, N.I. Glavatska, V.K. Lindroos, Martensitic transformations and mobility of twin boundaries in Ni2MnGa alloys studied by using internal friction, Scripta Mater. 49 (2003) 803.

DOI: https://doi.org/10.1016/s1359-6462(03)00360-9

[31] L. Dai, M. Wuttig, E. Pagounis, Twin stabilization in a ferromagnetic shape memory alloy, Scripta Mater. 55 (2006) 807.

DOI: https://doi.org/10.1016/j.scriptamat.2006.07.031

[32] W.H. Wang, G.D. Liu, G.H. Wu, Magnetically controlled high damping in ferromagnetic Ni52Mn24Ga24 single crystal, Appl. Phys. Lett. 89 (2006) 101911.

DOI: https://doi.org/10.1063/1.2345462

[33] M. Zeng, S.W. Or, H.L.W. Chan, Ultrahigh anisotropic damping in ferromagnetic shape memory Ni–Mn–Ga single crystal, J. Alloys Comp. 493 (2010) 565.

DOI: https://doi.org/10.1016/j.jallcom.2009.12.156

[34] X.F. Dai, G.D. Liu, Z.H. Liu, G.H. Wu, J.L. Chen, F.B. Meng, H.Y. Liu, L.Q. Yan, J.P. Qu, Y.X. Li, W.G. Wang, J.Q. Xiao, Superelasticity of CoNiGa: Fe single crystals, Appl. Phys. Lett. 87 (2005) 112504.

DOI: https://doi.org/10.1063/1.2045563

[35] R.F. Hamilton, H. Sehitoglu, C. Efstathiou, H.J. Maier, Y. Chumlyakov, Pseudoelasticity in Co–Ni–Al single and polycrystals, Acta Mater. 54 (2006) 587.

DOI: https://doi.org/10.1016/j.actamat.2005.09.025

[36] Y. Tanaka, K. Oikawa, Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β + γ two-phase structure, Mater. Sci. Eng. A 438-440 (2006) 1054.

DOI: https://doi.org/10.1016/j.msea.2006.05.021

[37] J. Dadda, H.J. Maier, D. Niklasch, I. Karaman, H.E. Karaca, Y.I. Chumlyakov, Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature, Metall. Mater. Trans. A 39 (2008) (2026).

DOI: https://doi.org/10.1007/s11661-008-9543-0

[38] Y. Zhang, M. Li, Y.D. Wang, J.P. Lin, K.A. Dahmen, Z.L. Wang, P.K. Liaw, Superelasticity and serration behavior in small-sized NiMnGa alloys, Adv. Eng. Mater. 16 (2014) 955.

DOI: https://doi.org/10.1002/adem.201300518

[39] H.E. Karaca, I. Karaman, A. Brewer, B. Basaran, Y.I. Chumlyakov, H.J. Maier, Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals, Scripta Mater. 58 (2008) 815.

DOI: https://doi.org/10.1016/j.scriptamat.2007.12.029

[40] K. Oikawa, R. Saito, K. Anzai, H. Ishikawa, Y. Sutou, T. Omori, A. Yoshikawa, V.A. Chernenko, S. Besseghini, A. Gambardella, R. Kainuma, K. Ishida, Elastic and superelastic properties of NiFeCoGa fibers grown by micro-pulling-down method, Mater. Trans. 50 (2009).

DOI: https://doi.org/10.2320/matertrans.m2009013

[41] N. Ozdemir, I. Karaman, N.A. Mara, Y.I. Chumlyakov, H.E. Karaca, Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation, Acta Mater. 60 (2012) 5670.

DOI: https://doi.org/10.1016/j.actamat.2012.06.035

[42] Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, K. Ishida, Ferrous polycrystalline shape-memory alloy showing huge superelasticity, Science 327 (2010) 1488.

DOI: https://doi.org/10.1126/science.1183169

[43] T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, K. Ishida, Superelastic effect in polycrystalline ferrous alloys, Science 333 (2011) 68.

DOI: https://doi.org/10.1126/science.1202232

[44] A. Evirgen, J. Ma, I. Karaman, Z.P. Luo, Y.I. Chumlyakov, Effect of aging on the superelastic response of a single crystalline FeNiCoAlTa shape memory alloy, Scripta Mater. 67 (2012) 475.

DOI: https://doi.org/10.1016/j.scriptamat.2012.06.006

[45] J. Ma, B.C. Hornbuckle, I. Karaman, G.B. Thompson, Z.P. Luo, Y.I. Chumlyakov, The effect of nanoprecipitates on the superelastic properties of FeNiCoAlTa shape memory alloy single crystals, Acta Mater. 61 (2013) 3445.

DOI: https://doi.org/10.1016/j.actamat.2013.02.036

[46] T. Omori, S. Abe, Y. Tanaka, D.Y. Lee, K. Ishida, R. Kainuma, Thermoelastic martensitic transformation and superelasticity in Fe–Ni–Co–Al–Nb–B polycrystalline alloy, Scripta Mater. 69 (2013) 812.

DOI: https://doi.org/10.1016/j.scriptamat.2013.09.006

[47] T. Omori, M. Okano, R. Kainuma, Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire, APL Mat. 1 (2013) 032103.

DOI: https://doi.org/10.1063/1.4820429