Stability of ZnO-Pr6O11-Cr2O3 Varistor Ceramics against Electrical Degradation


Article Preview

The vulnerability of varistor ceramics to electrical degradation during operation not only affects their nonlinear properties but also leads to shortening of device’s lifetime by increasing the risk of failures including melting, fire or even explosions. In this study, ZnO-Pr6O11-Cr2O3 varistor ceramics were prepared through modified citrate gel method and solid state-sintering at 1250 °C for 1 hour. The stability of their nonlinear properties under prolonged application of DC electrical field in high temperature ambient was investigated. Degradation process was accelerated by applying direct current (DC) electrical field of 15 % below the breakdown field point of ceramics for 54 hours consecutively at temperature of 30 to 125 °C. The findings indicate that ZnO-Pr6O11-Cr2O3 ceramics exhibited its susceptibility to electrical degradation after prolonged electrical and thermal stresses application. Its nonlinear coefficient has reduced by 4.4 % reduction, the breakdown field has reduced by 9.9 % and the leakage current density increased by 13.7 % in comparison to its initial value. Degradation process in varistor ceramics of ZnO-Pr6O11-Cr2O3 was a direct response to collapsed Double Schottky Barrier at ZnO grain boundary.



Edited by:

H. Azhan, K. Azman, O.H. Hassan, N. Osman, R. Abd-Shukor, M. Deraman, W. Kong, M.K. Halimah, R.S. Azis, M.R. Sahar, Z. Aspanut, S.A. Halim




W. R. W. Abdullah et al., "Stability of ZnO-Pr6O11-Cr2O3 Varistor Ceramics against Electrical Degradation", Materials Science Forum, Vol. 846, pp. 115-125, 2016

Online since:

March 2016




* - Corresponding Author

[1] T.K. Gupta and W.G. Carlson, A grain-boundary defect model for instability/stability of a ZnO varistor. J. Mater. Sci. 20 (1985) 3487-3500.

DOI: 10.1007/bf01113755

[2] G.E. Pike, Electronic properties of ZnO varistors: A new model in MRS Proceedings. Cambridge University Press, 1981, p.539.

[3] M. Matsuoka, Progress in research and development of zinc oxide varistors. Adv. Ceram. 7 (1981) 290-308.

[4] M. Jaroszewski, K. Wieczorek, W. Bretuj and P. Kostyla, Capacitance changes in degraded metal oxide varistors. in Proceedings of the 2004 IEEE International Conference on Solid Dielectrics. ICSD 2004. IEEE, 2004, pp.736-738.

DOI: 10.1109/icsd.2004.1350537

[5] R. Einzinger, Metal oxide varistors. Annu. Rev. Mat. Sci. 17 (1987) 299-321.

[6] K. Eda, A. Iga and M. Matsuoka, Degradation mechanism of non-Ohmic zinc oxide ceramics. J. Appl. Phy. 51 (1980) 2678-2684.

DOI: 10.1063/1.327927

[7] C.W. Nahm, Sintering effect on ageing behavior of rare earths (Pr6O11-Er2O3-Y2O3)-doped ZnO varistor ceramics. J. Rare Earth. 30 (2012) 1028 - 1033.

DOI: 10.1016/s1002-0721(12)60174-4

[8] W. Chen and H.L.W. Chan, Degradation of ZnO ceramic varistors induced by water and AC voltages. Jap. J. Appl. Phy. 43 (2004) 701-702.

DOI: 10.1143/jjap.43.701

[9] M.H. Wang, Degradation phenomena due to humidity in low voltage ZnO varistors. Ceram. Int. 33 (2007) 151-154.

[10] M.R.C. Santos, P.R. Bueno, E. Longo, J.A. Varela, Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors. J. Eur. Ceram. Soc. 21 (2001) 161-167.

DOI: 10.1016/s0955-2219(00)00177-1

[11] H. Yoshida, M. Takada, and S. Yoshikado, Study on the recovery of electrical degradation of ZnO varistors. Key Eng. Mater. 350 (2008) 209-212.

DOI: 10.4028/

[12] M.S. Castro and C.M. Aldao, Different degradation processes in ZnO varistors. Ceram. Int. 22 (1996) 39-43.

[13] E.R. Leite, J.A. Varela, and E. Longo, A new interpretation for the degradation phenomenon of ZnO varistors. J. Mater. Sci. 27 (1992) 5325-5329.

DOI: 10.1007/bf02403838

[14] J.F. Cordaro, Y. Shim and J.E. May, Bulk electron traps in zinc oxide varistors. J. Appl. Phy. 60 (1986) 4186-4190.

DOI: 10.1063/1.337504

[15] J.C. Simpson, J.C. and J.F. Cordaro, Defect clusters in zinc oxide. J. Appl. Phy. 67 (1990) 6760-6763.

[16] Y.P. Wang, W.I. Lee, and T.Y. Tseng, Degradation phenomena of multilayer ZnO-glass varistors studied by deep level transient spectroscopy. Appl. Phy. Lett. 69 (1996) 1807-1809.

DOI: 10.1063/1.117493

[17] C.W. Nahm, Electrical properties and stability of praseodymium oxide-based ZnO varistor ceramics doped with Er2O3. J. Eur. Ceram. Soc. 23 (2003) 1345-1353.

DOI: 10.1016/s0955-2219(02)00285-6

[18] R.A. Winston and J.F. Cordaro, Grain-boundary interface electron traps in commercial zinc oxide varistors. J. Appl. Phy. 68 (1990) 6495-6500.

DOI: 10.1063/1.346848

[19] D.R. Clarke, Varistor ceramics. J. Am. Ceram. Soc. 83 (1999) 485-502.

[20] J.C. Wurst and J.A. Nelson, Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J. Am. Ceram. Soc. 55 (1972) 109-109.

DOI: 10.1111/j.1151-2916.1972.tb11224.x

[21] S.J. Dillon, S.K. Behera and M.P. Harmer, An experimentally quantifiable solute drag factor. Acta Mater. 56 (2008) 1374-1379.

DOI: 10.1016/j.actamat.2007.11.042

[22] L.M. Levinson and H.R. Philipp, Zinc oxide varistor - A review. J. Am. Ceram. Soc. 65 (1986) 639-646.

[23] C. Li, J. Wang, W. Su, H. Chen, W. Wang and D. Zhuang, Investigation of electrical properties of SnO2·Co2O3·Sb2O3 varistor system. Phys. Rev. B. Cond. Matter. 307 (2001) 1-8.

DOI: 10.1016/s0921-4526(01)01026-2

[24] Y.H. Lin, J. Cai, M. Li, C.W. Nan and J. He, Grain boundary behavior in varistor-capacitor TiO2-rich CaCu3Ti4O12 ceramics. Jap. J. Appl. Phys. 108 (2008) 074111.

DOI: 10.1063/1.2902402

[25] J. Fan and R. Freer, Deep level transient spectroscopy of zinc oxide varistors doped with aluminum oxide and/or silver oxide. J. Am. Ceram. Soc. 77 (1994) 2663-2668.

DOI: 10.1111/j.1151-2916.1994.tb04659.x

[26] Frigura-Iliasa, F.M., D. Vatau, L.N. Mihet-Popa and C. Barbulescu, Heat dissipation improvement for ZnO based varistors. in 14th International Conference on Harmonics and Quality of Power (ICHQP) 2010. IEEE, 2010, pp.1-6.

DOI: 10.1109/ichqp.2010.5625360

[27] T. Senda and R.C. Bradt, Grain growth in sintered ZnO and ZnO-Bi2O3 ceramics. J. Am. Ceram. Soc. 73 (1990) 106-114.

DOI: 10.1111/j.1151-2916.1990.tb05099.x

[28] M.A. Ramírez, J. F. Fernández, J.D. Frutos, P.R. Bueno, E. Longo and J.A. Varela, Microstructural and nonohmic properties of ZnO. Pr6O11. CoO polycrystalline system. Mater. Res. 13 (2010) 29-34.

DOI: 10.1590/s1516-14392010000100008

[29] F. Greuter, Electrically active interfaces in ZnO varistors. Sol. State Ionics, 75 (1995) 67-78.

DOI: 10.1016/0167-2738(94)00181-q

[30] Ü. Özgür, I. Ya, C. Alivov, A. Liu, M.A. Teke, S. Reshchikov, S. Doğan, V.C.S.J. Avrutin, S-J. Cho and H. Morkoc. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98 (2005) pp.0413011-041301103.

DOI: 10.1063/1.1992666

[31] L. Cheng, G. Li, K. Yuan,L. Meng and L. Zheng, Improvement in nonlinear properties and electrical stability of ZnO varistors with B2O3 additives by nano-coating method. J. Am. Ceram. Soc. 95 (2012) 1004-1010.

DOI: 10.1111/j.1551-2916.2011.04900.x

[32] M.A. Ramírez, W. Bassi, P.R. Bueno, E. Longo and J.A. Varela, Comparative degradation of ZnO- and SnO2 -based polycrystalline non-ohmic devices by current pulse stress. J. Phys. D. Appl. Phys. 41 (2008) 1220021-1220025.

DOI: 10.1088/0022-3727/41/12/122002

[33] M.A. Ramírez, R. Tararam, A.Z. Simões, A. Ries, E. Longo, J.A. Varela, Degradation analysis of the SnO2 and ZnO-based varistors using electrostatic force microscopy. J. Am. Ceram. Soc. 96 (2013) 1801-1809.

DOI: 10.1111/jace.12241

Fetching data from Crossref.
This may take some time to load.