Tuning Surface Plasmon in Erbium-Boro-Tellurite Nanoglass via Thermal Annealing


Article Preview

The demand for tunable surface plasmon (SP) of embedded metal nanoparticles (NPs) in rare earth doped inorganic lasing glasses is ever-growing. Following melt quenching method Er3+ doped zinc-boro-tellurite glasses containing silver (Ag) NPs are prepared. Glasses are heat treated (thermally annealed) at varying temperatures and time duration to alter the NPs morphology which generates SP. The annealing assisted SP resonance mediated modification in spectral features is discerned. Samples heat treatment at 410 °C for 6 hrs duration ensures the reduction of Ag+ ions to Ago NPs. Thermally annealed glasses are characterized via XRD, UV–Vis-IR absorption, photoluminescence spectroscopy, and TEM imaging. XRD spectra confirm the amorphous nature of the glass and TEM image reveals the existence of homogeneously distributed spherically shaped silver NPs of average diameter ~4.5 nm. NPs are found to grow with the increase of both annealing time and temperature. The UV–Vis spectra exhibit seven absorption bands corresponding to 4f–4f transitions of Er3+ ions in the wavelength range of 500-650 nm. The localized SPR band is evidenced at 550 and 580 nm. Heat treatment causes a red shift of the plasmon peaks ascribed to the alteration in glass refractive index. Furthermore, the glass sample annealed for 6 hrs displays maximum enhancement in the emission intensity corresponding to the peaks centered at 536 (2H11/24I15/2), 550 (4S3/24I15/2) and 632 nm (4F9/24I15/2). This enhancement is primarily attributed to the local field effect of the silver NPs. Admirable features of the results suggest that our systematic method for heat treatment in tuning NPs size assisted SPR may contribute towards the development of functional glass.



Edited by:

H. Azhan, K. Azman, O.H. Hassan, N. Osman, R. Abd-Shukor, M. Deraman, W. Kong, M.K. Halimah, R.S. Azis, M.R. Sahar, Z. Aspanut, S.A. Halim




Z. A. Mahraz et al., "Tuning Surface Plasmon in Erbium-Boro-Tellurite Nanoglass via Thermal Annealing", Materials Science Forum, Vol. 846, pp. 85-90, 2016

Online since:

March 2016




* - Corresponding Author

[1] K.V. Raju, C.N. Raju, S. Sailaja, B.S. Reddy. Judd–Ofelt analysis and photoluminescence properties of RE3+ (RE= Er & Nd): Cadmium lithium boro tellurite glasses, Solid State Sci. 15 (2013) 102-109.

DOI: https://doi.org/10.1016/j.solidstatesciences.2012.08.011

[2] G. Mie. Contribution on optical properties of turbid solution, with special reference to colloid metallic solution, Ann Physik. 25 (1908) 377–445.

[3] P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J Phys Chem B. 110 (2006).

DOI: https://doi.org/10.1021/jp057170o

[4] U. Saxena, P. Goswami,. J Nanopart Res. 14 (2012) 813-821.

[5] S. Link, M.A. El-Sayed. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles, J Phys Chem B. 103 (1999) 4212–4217.

DOI: https://doi.org/10.1021/jp984796o

[6] K. Grochowska, N. Nedyalkov, P. Atanasov, G. Sliwinski. Nanostructuring of thin Au films by means of short UV laser pulses, Opto-Electronics Rev. 19 (2011) 327–332.

DOI: https://doi.org/10.2478/s11772-011-0029-z

[7] C. D. Geddes and J. R. Lakowicz. Nanostructuring of thin Au films by means of short UV laser pulses, J. Fluoresc. 12 (2002) 121–129.

[8] K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, C. D. Geddes. Metal-enhanced fluorescence: an emerging tool in biotechnology, Curr. Opin. Biotechnol. 16 (2005) 55–62.

DOI: https://doi.org/10.1016/j.copbio.2005.01.001

[9] Z. Pan, A. Ueda, R. Aga Jr., A. Burger, R. Mu and S.H. Morgan. Spectroscopic studies of Er3+ doped Ge-Ga-S glass containing silver nanoparticles, J. Non-Cryst. Solids. 356 (2010) 1097-1101.

DOI: https://doi.org/10.1016/j.jnoncrysol.2010.04.014

[10] P. N. Prasad, Wiley. Nanophotonics, New Jersey. (2004). 129-151.

[11] S. A. Maier, H. A. Atwater. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J App Phy. 98 (2005) 011101-011105.

DOI: https://doi.org/10.1063/1.1951057

[12] M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, G.C. Righini. Mechanisms of Ag to Er energy transfer in silicate glasses: A photoluminescence study, Phys Rev B. 75 (2007) 125-102.

DOI: https://doi.org/10.1103/physrevb.75.125102

[13] V.A.G. Rivera, D. Manzani, Y. Messaddeq, L.A.O. Nunes, E. Marega. Study of Er3+ fluorescence on tellurite glasses containing Ag nanoparticles, J. Phys. Conf. Ser. 274 (2011) 012123-012127.

DOI: https://doi.org/10.1088/1742-6596/274/1/012123

[14] S.M. Nasir, H. Nur. Gold Nanoparticles Embedded on the Surface of Polyvinyl Alcohol Layer, J. Fundam. Sci. 4 (2008) 245-252.

[15] D. Compton, L. Cornish, E.V. der Lingen, Gold Bull. 36 (2003) 51-58.

[16] T. Som, B. Karmakar. Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites, J. Appl. Phys. 105 (2009) 013102-013106.

DOI: https://doi.org/10.1063/1.3054918