Doping of 4H-SiC with Group IV Elements

Abstract:

Article Preview

Germanium (Ge) doping of 4H silicon carbide (SiC) has recently attracted attention because a conductivity-enhancing effect was reported. In this work, we report on an experimental and theoretical approach to elucidate this effect. Ge and tin (Sn) – a second candidate of group IV elements – have been implanted into n-type 4H-SiC. Despite the expected isoelectric nature of Ge and Sn, a more efficient annealing of implantation-induced defects was observed compared to noble gas implantation with identical simulated initial implantation damage. In particular, a strong reduction of the prominent Z1/2 defect was observed. Density functional theory calculations under equilibrium conditions show that Ge is mainly incorporated on a substitutional silicon lattice site without creating new charge transition levels in the bandgap. The low abundance of other Ge-related defects suggests that kinetic mechanisms should be responsible for the observed effect of group IV doping.

Info:

Periodical:

Edited by:

Fabrizio Roccaforte, Francesco La Via, Roberta Nipoti, Danilo Crippa, Filippo Giannazzo and Mario Saggio

Pages:

301-307

DOI:

10.4028/www.scientific.net/MSF.858.301

Citation:

M. Krieger et al., "Doping of 4H-SiC with Group IV Elements", Materials Science Forum, Vol. 858, pp. 301-307, 2016

Online since:

May 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Sledziewski, S. Beljakowa, K. Alassaad, P. Kwasnicki, R. Arvinte, S. Juillaguet, M. Zielinski, V. Souliere, G. Ferro, H. B. Weber, M. Krieger, Mater. Sci. Forum 778-780 (2014), 261.

DOI: 10.4028/www.scientific.net/msf.778-780.261

[2] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996), 11169.

[3] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys. 125 (2006) 224106.

[4] P. Deák, B. Aradi, T. Frauenheim, E. Janzén, A. Gali, Phys. Rev. B 81 (2010), 153203.

[5] M. Bockstedte, A. Mattausch, O. Pankratov, Appl. Phys. Lett 85 (2004), 58 and Refs. therein.

[6] K. Kawahara, X. T. Trinh, N. T. Son, E. Janzén, J. Suda, T. Kimoto, J. Appl. Phys. 115 (2014) 143705.

[7] T. Sledziewski, G. Ellrott, W. Rösch, H. B. Weber, M. Krieger, Mater. Sci. Forum 821-823 (2015), 347.

[8] G. Pensl, F. Ciobanu, T. Frank, D. Kirmse, M. Krieger, S. Reshanov, F. Schmid, M. Weidner, T. Ohshima, H. Itoh, W.J. Choyke, Microelectronic Engineering 83 (2006), 146.

DOI: 10.1016/j.mee.2005.10.040

[9] J. F. Ziegler, J. P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 2985).

[10] T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schöner, N. Nordell, phys. stat. sol. (a) 162 (1997) 199.

DOI: 10.1002/1521-396x(199707)162:1<199::aid-pssa199>3.0.co;2-0

In order to see related information, you need to Login.