Structure Formation and Phase Composition of Sulfur-Bitumen Systems


Article Preview

Nowadays, modification of the bitumen by sulfur is considered as an effective way to enhance the properties of materials for road construction. By means of using the sulfur we eliminate the need to reconstruct existing production facilities for asphalt concrete. There is a plenty of research had already been performed for investigation of the sulfur-extended asphalt. Still, formation of new compounds in sulfur-bitumen systems depends on many factors, including mixture and thermal conditions. In the present work we have carried out both experimental and theoretical examination of the specific sulfur-bitumen binder made of grade 60/90 petroleum bitumen and technical sulfur at temperatures that are typical for ordinary asphalt concrete technology. The obtained results indicate that there is no noticeable formation of new chemical products in sulfur-bitumen melts at temperatures below 145 °C. Sulfur is partially dissolved in bitumen during the technological operations; the limiting concentration of dissolved sulfur is near 10%. Later in the course of cooling, the crystallization of the sulfur takes place, accompanied with formation of a separate solid phase.



Edited by:

Nikolai Vatin, Vera Murgul






V. Gladkikh et al., "Structure Formation and Phase Composition of Sulfur-Bitumen Systems", Materials Science Forum, Vol. 871, pp. 110-117, 2016

Online since:

September 2016




* - Corresponding Author

[1] I. Bencowitz, E.S. Boe. Effect of Sulfur upon Some of the Properties of Asphalts. ASTM Proceedings. 38 (1938) 539-547.

[2] A. Yu. Fomin, V.G. Khozin. Primenenie sery v proizvodstve dorozhno-stroitel'nykh materialov [Using sulfur for the production of road concretes]. Stroitel'nye materialy [Building materials]. 11 (2009) 20-23.

[3] R. Hammond, I. Deme, D. McManus. The Use of Sand-Sulfur-Asphalt Mixes for Road-Base and Surface Applications. Proc. of Can. Tech. Asphalt Assoc. 16 (1971) 27-52.

[4] I. Deme. Sulfur as an Asphalt Diluent and a Mix Filler. Advances in Chemistry Series. 165 (1977) 174-189.

[5] T.L. Beatty, K., Dunn E.T. Harrigan, K. Stuart, H. Weber. Field Evaluation of Sulfur-Extended Asphalt Pavements. Journal of the Transportation Research Board. 1115 (1987) 161-170.

[6] I.M. Rudenskaya, A.V. Rudenskiy, Organicheskie vyazhushchie dlya dorozhnogo stroitel'stva [Organic binders for road construction], Moscow, (1984).

[7] T.W. Kennedy, R.P. Smith, R. Haas. An Engineering Evaluation of Sulfur-Asphalt Mixtures. Report GC-l, Prepared for Gulf Oil Canada, Austin Research Engineers Inc. Austin (1976).

[8] M.N. Alekhina, Ju.E. Vasiliev, N.V. Motin, I. Yu. Sarychev. Seroasfal'tobetonnye smesi [Sulfur-bitumen concrete mixtures]. Stroitel'nye materialy [Building materials]. 10 (2011) 12-13.

[9] N. Tran, A. Taylor, D. Timm, M. Robbins, B. Powell, R. Dongre. Evaluation of Mixture Performance and Structural Capacity of Pavements Using Shell Thiopave®. NCAT Report 10-05 (2010).

[10] V.A. Gladkikh, E.V. Korolev. Tekhniko-ekonomicheskaya effektivnost' primeneniya seroasfal'tobetonov [Technical and economic efficiency of sulfur-modified concretes]. Vestnik MGSU [News of Moscow State University of Civil Engineering]. 4 (2013).

DOI: 10.22227/1997-0935.2013.4.76-83

[11] V.A. Gladkikh, E.V. Korolev, D.L. Khusid. Asfal'tobetony, modifitsirovannye kompleksnoy dobavkoy na osnove tekhnicheskoy sery i neytralizatorov emissii toksichnykh gazov [Asphalt Concretes with Sulfur-based Complex Admixture and Toxic Gases Suppressors]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Building materials, equipment and technologies of XXI century]. 194 (2015).

[12] V.A. Gladkikh, E.V. Korolev, V.A. Smirnov. Modeling of the Sulfur-bituminous Concrete Mix Compaction. Advanced Materials Research. 1040 (2014) 525-528.

DOI: 10.4028/

[13] E.V. Korolev, V.A. Gladkikh, V.A. Smirnov. Properties of the Advanced Sulfur-bituminous Pavements. Advanced Materials and Structural Engineering: Proc. of the Intl. Conf. on Advanced Materials and Engineering Structural Technology. (2015).

DOI: 10.1201/b20958-62

[14] E.V. Korolev, S.S. Inozemtcev, V.A. Smirnov. Nanomodified Bitumen Composites: Solvation Shells and Rheology. Proc. of Intl. Conf. on Advanced Materials, Structures and Mechanical Engineering. (2016) 393-398.

DOI: 10.1201/b19693-84

[15] E.V. Korolev, A.P. Proshin, Yu.M. Bazhenov, Yu.A. Sokolova, Radiatsionno-zashchitnye i korrozionno-stoykie sernye stroitel'nye materialy [Radiation-protective and corrosion-resistant sulfur construction materials], Moscow, (2004).

[16] L.J. Bellamy. The Infrared Spectra of Complex Molecules, New York, (1980).

[17] L.A. Ivanova, V.A. Shevchenko, V.P. Kiselev, Organomineral'nye kompozitsii dlya remonta pokrytiy avtomobil'nykh dorog [Organomineral compositions for road repairing], Krasnoyarsk, (2011).

[18] D.A. Ayupov, L.I. Potapova, A.V. Murafa, V.H. Fakhrutdinova, Yu.N. Khakimullin, V.G. Khozin. Issledovanie osobennostey vzaimodeystviya bitumov s polimerami [Examination of bitumen-polymers interaction]. Izvestiya KazGASU [News of Kazan State University of Architecture and Construction]. 15 (2011).

[19] V.A. Verenko, I.K. Yatsevich. Vliyanie elementarnoy sery na strukturu organicheskikh vyazhushchikh i betonov [Influence of elemental sulfur to the structure of organic binders and concretes]. Proc. of III All-USSR Symposium Upravlenie strukturoobrazovaniem, strukturoy i svoystvami dorozhnykh betonov [Control of structure formation, structure and properties of road concretes],. Kharkiv (1983).

[20] J.A. Larkin, J. Katz, R.L. Scott. Phase Equilibria in Solutions of Liquid Sulfur. The Journal of Physical Chemistry. 71 (1967) 352-358.

[21] B. Meyer. Elemental Sulfur. Chemical Reviews. 76 (1976) 367-388.

In order to see related information, you need to Login.