Flammability of the Disperse-Filled Polymer Composites


Article Preview

For the purpose of fire safe construction it is necessary to develop and investigate effects of fillers to flammability of building materials, including composite materials with polymer matrix. In present work we demonstrate the results of such investigation. We have examined influence of chemical composition, amount of mineral fillers to flammability, smoke-forming ability and limiting oxygen index of building materials based on different polymer binders. The experimental data indicate that the main parameter which determines the influence of mineral fillers on the flammability of composites is a specific heat absorbed by the filler. The dependence between limiting oxygen index and specific heat of mineral fillers is revealed for composites with epoxy matrices. This dependence is simple and beneficial for practical use.



Edited by:

Nikolai Vatin, Vera Murgul




A. Askadsky et al., "Flammability of the Disperse-Filled Polymer Composites", Materials Science Forum, Vol. 871, pp. 40-46, 2016

Online since:

September 2016




* - Corresponding Author

[1] V.G. Khozin. Usilenie epoksidnykh polimerov [Strengthening the Epoxy Polymers], Kazan: PIC Publishing House, (2004).

[2] Polymer Green Flame Retardants. Ed. by C.D. Papaspyrides, P. Kiliaris. Amsterdam: Elsevier, (2014).

[3] P. Dufton. Flame Retardants for Plastics. Shawbury: Smithers Rapra Press, (2003).

[4] E. Kandare, B.K. Kandola, P. Myler. Evaluating the Influence of Varied Fire-retardant Surface Coatings on Post-Heat Flexural Properties of Glass/Epoxy Composites. Fire Safety Journal. 58 (2013) 112-120.

DOI: https://doi.org/10.1016/j.firesaf.2013.01.009

[5] T.R. Manley, S. Sidebotham. The Flammability at Elevated Temperatures of Polyester Resins Containing Antimony Oxide and Halogens. Fire Safety Journal 3 (1980) 25-29.

DOI: https://doi.org/10.1016/0379-7112(80)90004-1

[6] P. Georlette. Applications of Halogen Flame Retardants. In: Fire Retardant Materials. Ed. by A.R. Horrocks, D. Price. Sawston: Woodhead, 2001. 264-292.

DOI: https://doi.org/10.1533/9781855737464.264

[7] B. Schartel. Phosphorus-based Flame Retardancy Mechanisms – Old Hat or a Starting Point for Future Development? Materials. 3 (2010) 4710-4745.

DOI: https://doi.org/10.3390/ma3104710

[8] O. Mauerer. New Reactive, Halogen-free Flame Retardant System for Epoxy Resins. Polymer Degradation and Stability. 88 (2005) 70-73.

DOI: https://doi.org/10.1016/j.polymdegradstab.2005.04.001

[9] C. Luo, J. Zuo, F. Wang, Y. Yuan, F Lin, H. Huang, J. Zhao. High Refractive Index and Flame Retardancy of Epoxy Thermoset Cured by Tris(2-mercaptoethyl)phosphate. Polymer Degradation and Stability. 129 (2016) 7-11.

DOI: https://doi.org/10.1016/j.polymdegradstab.2016.03.028

[10] X. Chen, C. Jiao, S. Li, Y. Hu. Preparation and Properties of a Single Molecule Intumescent Flame Retardant. Fire Safety Journal. 58 (2013) 208–212.

DOI: https://doi.org/10.1016/j.firesaf.2013.01.011

[11] K. Lim, S. Bee, L.T. Sin, T. Tee, C.T. Ratnam, D. Hui, A.R. Rahmat. A Review of Application of Ammonium Polyphosphate as Intumescent Flame Retardant in Thermoplastic Composites. Composites Part B: Engineering. 84 (2016) 155-174.

DOI: https://doi.org/10.1016/j.compositesb.2015.08.066

[12] A.D. Naik, G. Fontaine, F. Samyn, X. Delva, J. Louisy, S. Bellayer, Y. Bourgeois, S. Bourbigot. Outlining the Mechanism of Flame Retardancy in Polyamide 66 Blended with Melamine-poly(zinc phosphate). Fire Safety Journal. 70 (2014) 46–60.

DOI: https://doi.org/10.1016/j.firesaf.2014.08.019

[13] K. Kishore, P. Kannan, K. Iyanar. Synthesis, Characterization and Fire Retardancy of Ferrocene Containing Poly-phosphate Esters. Journal of Polymer Science Part A: Polymer Chemistry. 29 (1991) 1039-1044.

DOI: https://doi.org/10.1002/pola.1991.080290711

[14] J. Zhang, C.M. Megaridis. Iron/soot Interaction in a Laminar Ethylene Nonpremixed Flame. Proc. of Twenty-fifth Symposium on Combustion. 25 (1994) 593-600.

DOI: https://doi.org/10.1016/s0082-0784(06)80690-9

[15] P. Carty, J. Grant, E. Metcalfe. Flame-retardancy and Smoke-suppression studies of ferrocene derivatives in PVC. Applied Organometallic Chemistry. 10 (1996) 101-111.

DOI: https://doi.org/10.1002/(sici)1099-0739(199603)10:2<101::aid-aoc484>3.0.co;2-7

[16] A.A. Askadsky, V.A. Ushkov, V.A. Smirnov. Polymer Composites with Ferrocene Derivatives for Fire-safe Construction. Proc. of Intl. Conf. on Advanced Materials, Structures and Mechanical Engineering ICAMSME 2015. (2016) 365-370.

DOI: https://doi.org/10.1201/b19693-79

[17] S. Lu, I. Hamerton. Recent Developments in the Chemistry of Halogen-free Flame Retardant Polymers. Progress in Polymer Science. 27 (2002) 1661-1712.

DOI: https://doi.org/10.1016/s0079-6700(02)00018-7

[18] V.A. Smirnov, E.V. Korolev, A.V. Evsigneev. Particle System Dynamics Software for the Design of Constructional Composites. Proc. of Intl. Conf. on Data Mining, Electronics and Information Technology DMEIT-2015. (2015). 139-146.

DOI: https://doi.org/10.17758/erpub.r815213

[19] M.L. Kerber, V.M. Vinogradov, G.S. Golovin. Polimernye kompozitsionnye materialy: struktura, svoystva, tekhnologiya [Polymer Composite Materials: Structure, Properties and Technology]. Ed. by A.A. Berlin. St. Petersburg: Professiya, (2008).

[20] S.L. Bazhenov, A.A. Berlin, A.A. Kulkov, V.G. Oshmyan. Polimernye kompozitsionnye materialy. Prochnost' i tekhnologiya [Polymer Composite Materials. Strength and Technology]. Dolgoprudnyy: Intellekt, (2010).

[21] M.T. Bryk. Destruktsiya napolnennykh polimerov [Destruction of filled polymers]. Moscow: Chemistry, (1989).

[22] V.A. Ushkov, V.M. Lalayan, Yu.K. Naganovskiy, D. Kh. Kulev. Goryuchest' napolnennykh poliolefinov [Flammability of the Filled Polyolefins]. Plastic Masses. 10 (1998). 56-58.

[23] V.M. Lalayan, M.S. Skralivetskaya, V.A. Ushkov, N.A. Khalturinsky. Termokhimicheskie parametry svechevogo goreniya polimernykh materialov vblizi predela [Polymer Composites: Thermochemical Parameters of the Conterminal Burning]. Chemical Physics. 1 (1989).