Modelling of Strain-Path Transients in Commercially Pure Aluminium

Abstract:

Article Preview

In the current work, the recently proposed homogeneous anisotropic hardening (HAH) model, featuring a distorted yield surface, is applied to commercially pure aluminium. A dislocation-based hardening rule is incorporated into the HAH model to describe the transient stagnation of the hardening rate during strain reversal. A cast and homogenized material with random texture previously investigated by Mánik et al. [1] is selected. The material is prestrained either by compression or rolling, and then tested in uniaxial tension to acquire either reverse softening or orthogonal hardening. The Bauschinger effect, the permanent softening during reverse loading and the hardening in the course of orthogonal loading are captured by the model. However, the permanent softening during orthogonal loading cannot be predicted, and the transient variations of the R-value predicted by the HAH model are neither in qualitative nor quantitative agreement with the experimental data.

Info:

Periodical:

Edited by:

Qing Liu, Jian-Feng Nie, Robert Sanders, Zhihong Jia and Lingfei Cao

Pages:

662-667

DOI:

10.4028/www.scientific.net/MSF.877.662

Citation:

J. S. Qin et al., "Modelling of Strain-Path Transients in Commercially Pure Aluminium", Materials Science Forum, Vol. 877, pp. 662-667, 2017

Online since:

November 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Mánik, B. Holmedal, O.S. Hopperstad, Strain-path change induced transients in flow stress, work hardening and r-values in aluminum, Int. J. Plast. 69 (2015) 1-20.

DOI: 10.1016/j.ijplas.2015.01.004

[2] J. Schmitt, J. Fernandes, J. Gracio, M. Vieira, Plastic behaviour of copper sheets during sequential tension tests, Mater. Sci. Eng. A. 147 (1991) 143-154.

DOI: 10.1016/0921-5093(91)90840-j

[3] J. Bauschinger, Changes of the elastic limit and the modulus of elasticity on various metals, Zivilingenieur. 27 (1881) 289-348.

[4] T. Hasegawa, T. Yakou, S. Karashima, Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium, Mater. Sci. Eng. A. 20 (1975) 267-276.

DOI: 10.1016/0025-5416(75)90159-7

[5] E. Rauch, J. Gracio, F. Barlat, G. Vincze, Modelling the plastic behaviour of metals under complex loading conditions, Modell. Simul. Mater. Sci. Eng. 19 (2011) 035009.

DOI: 10.1088/0965-0393/19/3/035009

[6] F. Li, P. Bate, Strain path change effects in cube textured aluminium sheet, Acta Metall. 39 (1991) 2639-2650.

DOI: 10.1016/0956-7151(91)90080-k

[7] F. Barlat, J.J. Gracio, M. -G. Lee, E.F. Rauch, G. Vincze, An alternative to kinematic hardening in classical plasticity [J]. International Journal of Plasticity, Int. J. Plast. 27 (2011) 1309-1327.

DOI: 10.1016/j.ijplas.2011.03.003

[8] J. -W. Lee, M. -G. Lee, F. Barlat, Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction, Int. J. Plast. 29 (2012) 13-41.

DOI: 10.1016/j.ijplas.2011.07.007

[9] F. Barlat, J. Ha, J.J. Grácio, M. -G. Lee, E.F. Rauch, G. Vincze, Extension of homogeneous anisotropic hardening model to cross-loading with latent effects, Int. J. Plast. 46 (2013) 130-142.

DOI: 10.1016/j.ijplas.2012.07.002

[10] E. Rauch, J. Gracio, F. Barlat, Work-hardening model for polycrystalline metals under strain reversal at large strains, Acta Mater. 55 (2007) 2939-2948.

DOI: 10.1016/j.actamat.2007.01.003

[11] J. Ha, M. -G. Lee, F. Barlat, Strain hardening response and modeling of EDDQ and DP780 steel sheet under non-linear strain path, Mech. Mater. 64 (2013) 11-26.

DOI: 10.1016/j.mechmat.2013.04.004

[12] J. Lee, D. Kim, Y. -S. Lee, H. Bong, F. Barlat, M. -G. Lee, Stress update algorithm for enhanced homogeneous anisotropic hardening model, Comput. Methods in Appl. Mech. Eng. 286 (2015) 63-86.

DOI: 10.1016/j.cma.2014.12.016

[13] F. Barlat, G. Vincze, J. Grácio, M. -G. Lee, E. Rauch, C. Tomé, Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels, Int. J. Plast. 58 (2014) 201-218.

DOI: 10.1016/j.ijplas.2013.11.002

[14] F. Barlat, J. Brem, J. Yoon, K. Chung, R. Dick, D. Lege, F. Pourboghrat, S. -H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets—part 1: theory, Int. J. Plast. 19 (2003) 1297-1319.

DOI: 10.1016/s0749-6419(02)00019-0

In order to see related information, you need to Login.