Tensile Deformation Behavior of Al-Cu 206 Cast Alloys near the Solidus Temperature


Article Preview

To study the micromechanics of semisolid deformation, a modified experimental set-up is employed in Gleeble 3800 thermomechamical testing unit to achieve a uniform temperature distribution in partially remelted aluminum samples. The temperature variation was markedly reduced to one degree for a length of 4-5 mm in the middle of tensile samples. High temperature semisolid tensile tests of Al-Cu 206 cast alloys were performed at different temperatures near solidus with a strain rate of 10-3 s-1, corresponding to the solid fractions (fs) between 1 and 0.95. The stress-displacement curves with different fs were measured and analyzed. The microstructure and fracture surface of samples were examined by optical and scanning electron microscopes. The relation between the microstructural characteristics, tensile properties and fracture behavior of semisolid 206 samples at high fs were explored. Mush deformation mechanisms were discussed in term of defect nucleation and propagation at the late stage of solidification.



Edited by:

Qing Liu, Jian-Feng Nie, Robert Sanders, Zhihong Jia and Lingfei Cao




A. Bolouri and X. G. Chen, "Tensile Deformation Behavior of Al-Cu 206 Cast Alloys near the Solidus Temperature", Materials Science Forum, Vol. 877, pp. 90-96, 2017

Online since:

November 2016




* - Corresponding Author

[1] K. M. Kareh, P. D. Lee, R. C. Atwood, T. Connolley, and C. M. Gourlay, Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography, Nat Commun., 5 (2014) 4464.

DOI: https://doi.org/10.1038/ncomms5464

[2] A. B. Phillion, S. Thompson, S. L. Cockcroft, and M. A. Wells, Tensile properties of as-cast aluminum alloys AA3104, AA6111 and CA31218 at above solidus temperatures, Mater. Sci. Eng. A, 497 (2008) 388–394.

DOI: https://doi.org/10.1016/j.msea.2008.07.027

[3] I. Farup, J. M. Drezet, and M. Rappaz, In situ observation of hot tearing formation in succinonitrile-acetone, Acta Mater., 49(2001) 1261–1269.

DOI: https://doi.org/10.1016/s1359-6454(01)00013-1

[4] D. G. Eskin, Suyitno, and L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys, Prog. Mater. Sci., 49 (2004) 629–711.

DOI: https://doi.org/10.1016/s0079-6425(03)00037-9

[5] M. Rappaz, J. -M. Drezet, and M. Gremaud, A new hot-tearing criterion, Metall. Mater. Trans. A, 30 (1999) 449–455.

DOI: https://doi.org/10.1007/s11661-999-0334-z

[6] E. Giraud, M. Suery, and M. Coret, Mechanical behavior of AA6061 aluminum in the semisolid state obtained by partial melting and partial solidification, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 41(2010) 2257–2268.

DOI: https://doi.org/10.1007/s11661-010-0268-5

[7] L. J. Colley, M. A. Wells, and D. M. Maijer, Tensile properties of as-cast aluminum alloy AA5182 close to the solidus temperature, Mater. Sci. Eng. A, 386 (2004) 140–148.

DOI: https://doi.org/10.1016/s0921-5093(04)00928-1

[8] D. Fabrègue, A. Deschamps, M. Suery, and J. M. Drezet, Non-isothermal tensile tests during solidification of Al-Mg-Si-Cu alloys: Mechanical properties in relation to the phenomenon of hot tearing, Acta Mater., 54 (2006) 5209–5220.

DOI: https://doi.org/10.1016/j.actamat.2006.06.027

[9] B. Cai, S. Karagadde, L. Yuan, T. J. Marrow, T. Connolley, and P. D. Lee, In situ synchrotron tomographic quantification of granular and intragranular deformation during semi-solid compression of an equiaxed dendritic Al–Cu alloy, Acta Mater., 76 (2014).

DOI: https://doi.org/10.1016/j.actamat.2014.05.035

[10] A. B. Phillion, R. W. Hamilton, D. Fuloria, A. C. L. Leung, P. Rockett, T. Connolley, and P. D. Lee, In situ X-ray observation of semi-solid deformation and failure in Al-Cu alloys, Acta Mater., 59 (2011) 1436–1444.

DOI: https://doi.org/10.1016/j.actamat.2010.11.005

[11] C. Puncreobutr, P. D. Lee, K. M. Kareh, T. Connolley, J. L. Fife, and A. B. Phillion, Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys, Acta Mater., 68 (2014) 42–51.

DOI: https://doi.org/10.1016/j.actamat.2014.01.007

[12] K. Liu, X. Cao, and X. G. Chen, Effect of Mn, Si, and cooling rate on the formation of iron-rich intermetallics in 206 Al-Cu cast alloys, Metall. Mater. Trans. B, 43 (2012) 1231–1240.

DOI: https://doi.org/10.1007/s11663-012-9694-7

[13] K. Liu, X. Cao, and X. -G. Chen, Solidification of Iron-Rich Intermetallic Phases in Al-4. 5Cu-0. 3Fe Cast Alloy, Metall. Mater. Trans. A, 42 (2010) 2004–(2016).

DOI: https://doi.org/10.1007/s11661-010-0578-7

[14] M. Sistaninia, A. B. Phillion, J. M. Drezet, and M. Rappaz, A 3-D coupled hydromechanical granular model for simulating the constitutive behavior of metallic alloys during solidification, Acta Mater., 60 (2012) 6793–6803.

DOI: https://doi.org/10.1016/j.actamat.2012.08.057

[15] M. Sistaninia, S. Terzi, a. B. Phillion, J. M. Drezet, and M. Rappaz, 3-D granular modeling and in situ X-ray tomographic imaging: A comparative study of hot tearing formation and semi-solid deformation in Al-Cu alloys, Acta Mater., 61 (2013).

DOI: https://doi.org/10.1016/j.actamat.2013.03.021

Fetching data from Crossref.
This may take some time to load.