Bridging the Gap between Ab Initio and Large Scale Studies - A Monte Carlo Study of Cu Precipitation in Fe

Abstract:

Article Preview

In the present study, we investigate the performance of efficient pair potentials in comparison to accurate ab initio potentials as energy descriptions for Monte Carlo simulations of solid-state precipitation. As test scenario, we take the phase decomposition kinetics in binary Fe1-xCux. In a first effort, we predict thermodynamic equilibrium properties of bcc-rich Cu precipitates in an Fe-rich solution with a temperature and composition dependent Cluster Expansion. For this Cluster Expansion, combined ab inito and phonon calculations for various configurations serve as input. Alternatively, we apply the Local Chemical Environment approach, where the energy is described by computationally efficient pair potentials, which are calibrated on the first principles cluster expansion results. We observe that these fundamentally different approaches provide similar information in terms of the precipitate radius, chemical composition and interface constitution, however, the computational effort for the Local Chemical environment approach is significantly lower.

Info:

Periodical:

Main Theme:

Edited by:

C. Sommitsch, M. Ionescu, B. Mishra, E. Kozeschnik and T. Chandra

Pages:

1564-1569

Citation:

A. Redermeier and E. Kozeschnik, "Bridging the Gap between Ab Initio and Large Scale Studies - A Monte Carlo Study of Cu Precipitation in Fe", Materials Science Forum, Vol. 879, pp. 1564-1569, 2017

Online since:

November 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] P.J. Othen, M.L. Jenkins, G.D.W. Smith, High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe, Philos. Mag. A, 70 (1994) 1–24.

[2] Y. Bouar, F. Soisson, Kinetic pathways from embedded-atom-method potentials: Influence of the activation barriers, Phys. Rev. B, 65 (2002) 1–14.

DOI: https://doi.org/10.1103/physrevb.65.094103

[3] F. Soisson, A. Barbu, G. Martin, Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation, Acta Mater., 44 (1996) 3789–3800.

DOI: https://doi.org/10.1016/1359-6454(95)00447-5

[4] F. Soisson, C.C. Fu, Energetic Landscapes and Diffusion Properties in FeCu Alloys, Solid State Phenom., 129 (2007) 31–39.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.129.31

[5] F. Soisson, G. Martin, Monte Carlo imulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics, Phys. Rev. B, 62 (2000) 203–214.

DOI: https://doi.org/10.1103/physrevb.62.203

[6] M. Athenes, P. Bellon, G. Martin, Effects of atomic mobilities on phase separation kinetics: a Monte-Carlo study, Acta Mater., 48 (2000) 2675–2688.

DOI: https://doi.org/10.1016/s1359-6454(00)00060-4

[7] J. Sanchez, F. Ducastelle, D. Gratias, Generalized cluster description of multicomponent systems, Phys. A Stat. Mech. Its Appl., 128A (1984) 334–350.

DOI: https://doi.org/10.1016/0378-4371(84)90096-7

[8] D. Reith, R. Podloucky, First-principles model study of the phase stabilities of dilute Fe-Cu alloys: Role of vibrational free energy, Phys. Rev. B, 80 (2009) 054108.

DOI: https://doi.org/10.1103/physrevb.80.054108

[9] D. Reith, M. Stöhr, R. Podloucky, T.C. Kerscher, S. Müller, First-principles modeling of temperature- and concentration-dependent solubility in the phase-separating alloy FexCu1-x, Phys. Rev. B, 86 (2012) 020201.

DOI: https://doi.org/10.1103/physrevb.86.020201

[10] K. Yaldram, K. Binder, Unmixing of binary alloys by a vacancy mechanism of diffusion: a computer simulation, Zeitschrift Fuer Phys. B Condens. Matter, 82 (1991) 405–418.

DOI: https://doi.org/10.1007/bf01357187

[11] P. Warczok, D. Reith, M. Schober, H. Leitner, R. Podloucky, E. Kozeschnik, Investigation of Cu precipitation in bcc-Fe – Comparison of numerical analysis with experiment, Int. J. Mater. Res. (formerly Zeitschrift Fuer Met., 102 (2011) 709–716.

DOI: https://doi.org/10.3139/146.110524

[12] D. Lerch, O. Wieckhorst, G.L.W. Hart, R.W. Forcade, S. Müller, UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input, Model. Simul. Mater. Sci. Eng., 17 (2009) 055003.

DOI: https://doi.org/10.1088/0965-0393/17/5/055003

[13] K. Kawasaki, Diffusion constants near the critical point for time-dependent ising models I, Phys. Rev., 145 (1966) 224–230.

DOI: https://doi.org/10.1103/physrev.145.224

[14] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21 (1953) 1087.

DOI: https://doi.org/10.2172/4390578

[15] Information on http: /matcalc. tuwien. ac. at.

[16] P. Warczok, Y. Shan, M. Schober, H. Leitner, E. Kozeschnik, Analysis of Clustering Characteristics during early Stages of Cu Precipitation in bcc-Fe, Solid State Phenom., 172-174 (2011) 309–314.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.172-174.309