Laser Pulse Simulation of High Energy Transient Thermal Loads on Bulk and Plasma Sprayed W for NFR

Abstract:

Article Preview

W is a plasma-facing material candidate for applications in future nuclear fusion reactors (NFR). In this work transient thermal loads of high energy have been simulated by interaction with a single laser pulse. The experiments have been carried out by using the Nd:Glass TVLPS laser working in first harmonic (wavelength λ = 1064 nm); the pulse parameters are: energy E ≈ 8 J, pulse duration ∆t ≈ 15 ns, focal spot size Φ = 200 μm, surface power density on the focal plane I = 1.7 x 1012 W/cm2.The damage produced by the laser pulse on the surface of bulk and plasma sprayed W has been investigated by Scanning Electron Microscopy (SEM) observations. The preliminary results will be presented.

Info:

Periodical:

Main Theme:

Edited by:

C. Sommitsch, M. Ionescu, B. Mishra, E. Kozeschnik and T. Chandra

Pages:

1576-1581

Citation:

M. Richetta et al., "Laser Pulse Simulation of High Energy Transient Thermal Loads on Bulk and Plasma Sprayed W for NFR", Materials Science Forum, Vol. 879, pp. 1576-1581, 2017

Online since:

November 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] B. Riccardi, A. Pizzuto, L. Bertamini, M. Diotalevi, G. Viedier, Atti del 16th Ieee/Npss Symposium on Fusion Engineering, San Diego, USA (1997) 910.

DOI: https://doi.org/10.1109/fusion.1997.687772

[2] B. Riccardi, A. Pizzuto, A. Orsini, S. Libera, E. Visca, L. Bertamini, F. Casadei, E. Severini, R. Montanari, R. Vesprini, P. Varone, G. Filacchioni, N. Litunovsky, Fusion Technology (1998) 223-228.

[3] M. Roedig, W. Kuehnlein, J. Linke, M. Merola, E. Rigal, B. Schedler, E. Visca, Fusion Engineering Design 61-62 (2002) 135-140.

DOI: https://doi.org/10.1016/s0920-3796(02)00113-8

[4] H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, B. Yoshida, J. of Nuclear Materials, 329-333 (2004) 66-73.

[5] M. Lipa, A. Durocher, R. Tivey, Th. Huber, B. Schedler, J. Weigert, Fusion Engineering Design, 75-79 (2005) 469-473.

DOI: https://doi.org/10.1016/j.fusengdes.2005.06.056

[6] I. Uytdenhouwen, M. Decreton, T. Hirai, J. Linke, G. Pintsuk, G. Van Oost., J. of Nuclear Materials, 363 (2007) 1099-1103.

DOI: https://doi.org/10.1016/j.jnucmat.2007.01.146

[7] H. Maier, T. Hirai, M. Rubel, R. Neu, Ph. Mertens, H. Greuner, Ch. Hopf, G.F. Matthews, O. Neubauer, G. Piazza, E. Gauthier, J. Likonen, R. Mitteau, G. Maddaluno, B. Riccardi, V. Philipps, C. Ruset, C.P. Lungu, I. Uytdenhouwen and JET EFDA Contributors, Nuclear Fusion, 47 (2007).

DOI: https://doi.org/10.1088/0029-5515/47/3/009

[8] A. Herrmann, H. Greuner, J.C. Fuchs, P. De Marné, R. Neu And Asdex Upgrade Team, Physica Scripta, T138 (2009), 014059.

DOI: https://doi.org/10.1088/0031-8949/2009/t138/014059

[9] L. Ciambella, G. Maddaluno, R. Montanari, E. Pakhomova, La Metallurgia Italiana, 5 (2015) 31-39.

[10] P. Deodati, R. Donnini, R. Montanari, N. Ucciardello, Materials Science Forum 706-709(2012) 835-840.

DOI: https://doi.org/10.4028/www.scientific.net/msf.706-709.835

[11] L. Ciambella, R. Donnini, R. Montanari, Materials Science Forum, 783-786 (2014) 2353-2358.

DOI: https://doi.org/10.4028/www.scientific.net/msf.783-786.2353

[12] B. Riccardi, R. Montanari, M. Casadei, G. Costanza, G. Filacchioni, A. Moriani, J. of Nuclear Materials 352 (2006) 29-35.

[13] M. Francucci, P. Gaudio, S. Martellucci, M. Richetta, International Journal of Spectroscopy (2011), 792131-792158.

[14] FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements, H.K. Chung, M.H. Chen, W.L. Morgan, Yuri Ralchenko, R.W. Lee, High Energy Density Physics v. 1 (2005) 3.

DOI: https://doi.org/10.1016/j.hedp.2005.07.001

[15] F.L. Chong, J.L. Chen, J.G. Li, X.B. Zheng, J. of Nuclear Materials 386–388 (2009) 780-783.

[16] H. Kurehashi, Y. Ohtsuka, Y. Ueda, H. Kurishita, J. of Nuclear Materials 417 (2011) 487-490.

[17] Z.J. Zhou, S.X. Song, J. Du, C.C. Ge, J. of Nuclear Materials 367–370 (2007) 1468-1471.