Defects and Charging Processes in Li-Ion Battery Cathodes Studied by Operando Magnetometry and Positron Annihilation


Article Preview

A brief report is given on recent studies of the atomistic processes during charging of battery cathode material LixCoO2 by means of magnetometry and positron annihilation. A set-up for operando magnetometry is implemented which, for the first time, allowed to continuously monitor the distinct variation of the magnetic susceptibility χ of LixCoO2 which occurs during consecutive charging and discharging cycles. The variation of χ with Li+ content in the concentration range 1>x≥0.77 arises from a variation of the electronic density of states and from electronic correlation effects. The χ (x)-behaviour for x<0.77 shows that oxygen is involved in the charging process. Positron annihilation reveals vacancy-type defects on the Li-sublattice, the size of which increases with Li-extraction. Indication for Li-reordering at the reversibility limit of Li extraction is found which correlates with χ (x)-variations in this concentration regime. First measurements on LixCoO2 thin-films performed at the positron beam line NEPOMUC of FRM II at the Heinz Maier-Leibnitz neutron source will be presented.



Main Theme:

Edited by:

C. Sommitsch, M. Ionescu, B. Mishra, E. Kozeschnik and T. Chandra




R. Würschum et al., "Defects and Charging Processes in Li-Ion Battery Cathodes Studied by Operando Magnetometry and Positron Annihilation", Materials Science Forum, Vol. 879, pp. 2125-2130, 2017

Online since:

November 2016




* - Corresponding Author

[1] N. A. Chernova, G. M. Nolis, F. O. Omenya, H. Zhou, Z. Li, M. S. Whittingham, J. Mater. Chem. 21 (2011) 9865-9875.

[2] S. Topolovec, H. Kren, G. Klinser, S. Koller, H. Krenn, R. Würschum, J. Solid State Electrochem. in press, DOI: 10. 1007/s10008-015-3110-6.

[3] S. Topolovec, H. Krenn, R. Würschum, Rev. Sci. Instrum. 86 (2015) 063903.

[4] S. Topolovec, H. Krenn, R. Würschum, J. Magn. Magn. Mater. 397 (2016) 96.

[5] U. Brossmann, W. Puff, R. Würschum, Positron Annihilation Studies of Materials, in: E.N. Kaufmann (Ed. ), Characterization of Materials, John Wiley & Sons Inc, (2003).


[6] G. Klinser, S. Topolovec, H. Kren, S. Koller, H. Krenn, R. Würschum, to be published.

[7] P. Parz, B. Fuchsbichler, S. Koller, B. Bitschnau, F. -A. Mautner, W. Puff, R. Würschum, Appl. Phys. Lett. 102 (2013) 151901.


[8] L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage, C. Delmas, D. Gonbeau, Chem. Mater. 20 (2008) 583.

[9] W. -S. Yoon, K. -B. Kim, M. -G. Kim, M. -K. Lee, H. -J. Shin, J. -M. Lee, J. -S. Lee, C. -H. Yo, J. Phys. Chem. B 106 (2002) 2526.

[10] A. Van der Ven, M. K. Aydinol, G. Ceder, G. Kresse, and J. Hafner, Phys. Rev. B 58 (1998) 2975–2987.


[11] A. Van der Ven and G. Ceder, J. Power Sources 97–98 (2001) 529.

[12] C. Hugenschmidt, B. Löwe, J. Mayer, C. Piochacz, P. Pikart, R. Repper, M. Stadlbauer, and K. Schreckenbach, Nucl. Instr. Meth. A 593 (2008) 616.


[13] M. Stadlbauer, C. Hugenschmidt, and K. Schreckenbach, Appl. Surf. Sci. 255 (2008) 136.

[14] M. Reiner, P. Pikart, and C. Hugenschmidt, J. Phys. Conf. Ser. 443(2013) 012071.

[15] G, Schmülling, M. Winter, T. Placke; Appl. Mater. & Interfaces 7 (2015) 20124-20133.

[16] T. Stockhoff, T. Gallasch, F. Berkemeier, G. Schmitz; Thin Solid Films 520 (2012) 3668-3674.