Effect of Friction Stir Welding on Microstructure of a 5024 Alloy


Article Preview

Influence of friction stir welding (FSW) on microstructure of an Al-4.57Mg-0.35Mn-0.2Sc-0.09Zr (wt. pct.) alloy was studied. Following parameters of FSW were used: the rotation speeds of 500, 650 and 800 rpm, the traverse speed of 75 mm/min and the tilt angle of 2.5°. Defect-free welds were obtained using all these parameters. FSW leads to the formation of fully recrystallized microstructures with average grain sizes less 2 μm and a moderate dislocation density of ~1013 m2 in the stir zone. No evidence for abnormal grain growth was found in the heat affected zone of the weld. The nanoscale Al3(Sc,Zr) dispersoids coarsened to 21 nm but retained coherent interfaces and cube-cube orientation relationship with the matrix.



Main Theme:

Edited by:

C. Sommitsch, M. Ionescu, B. Mishra, E. Kozeschnik and T. Chandra




D. Yuzbekova et al., "Effect of Friction Stir Welding on Microstructure of a 5024 Alloy", Materials Science Forum, Vol. 879, pp. 2249-2254, 2017

Online since:

November 2016




* - Corresponding Author

[1] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782-817.

DOI: https://doi.org/10.1016/j.actamat.2012.10.038

[2] Z. Ma, F. Liu, R. Mishra, Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing, Acta Mater. 58 (2010) 4693-4704.

DOI: https://doi.org/10.1016/j.actamat.2010.05.003

[3] S. Malopheyev, V. Kulitskiy, S. Mironov, D. Zhemchuzhnikova, R. Kaibyshev, Friction-stir welding of an Al-Mg-Sc-Zr alloy in as-fabricated and work-hardened conditions, Mater. Sci. Eng. A 600 (2014) 159-170.

DOI: https://doi.org/10.1016/j.msea.2014.02.018

[4] X. Sauvage, A. Dede, A. Cabello Munoz, B. Huneau, Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al–Mg–Si and Al–Mg–Sc alloys, Mater. Sci. Eng. A 491 (2008) 346-371.

DOI: https://doi.org/10.1016/j.msea.2008.02.006

[5] P. Threadgill, A. Leonard, H. Shercliff, P. Withers, Friction stir welding of aluminium alloys, Int. Mater. Rev. 54 (2009) 49-93.

DOI: https://doi.org/10.1179/174328009x411136

[6] R.S. Mishra, Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R 50 (2005) 1–78.

[7] Y. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063, Metall. Mater. Trans. A 33 (2002) 625-635.

DOI: https://doi.org/10.1007/s11661-002-0124-3

[8] J. Røyset, N. Ryum, Scandium in aluminium alloys, Inter. Mater. Rev 50 (2005) 19-44.

[9] A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev, Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure, Mater. Sci. Eng. A 560 (2013) 178-192.

DOI: https://doi.org/10.1016/j.msea.2012.09.054

[10] J.K. Mackenzie, Second Paper on Statistics Associated with the Random Disorientation of Cubes, Biometrika 45 (1958) 229-240.

DOI: https://doi.org/10.1093/biomet/45.1-2.229

[11] D.B. Williams, C.B. Carter, editors. Transmission electron microscopy, New York, Plenum Press, (1996).

[12] S. Iwamura, Y. Miura, Loss in coherency and coarsening behavior of Al3Sc precipitates, Acta Mater. 52 (2004) 591-600.

DOI: https://doi.org/10.1016/j.actamat.2003.09.042

Fetching data from Crossref.
This may take some time to load.