Parametric Investigation of Mooney-Rivlin Material Constants on Silicone Biocomposite


Article Preview

Hyperelastic materials are unique materials that have high tendency to stretch and its highly non-linear behaviour is commonly investigated using hyperelastic constitutive models. The aim of this paper is to investigate the sensitivity of Mooney-Rivlin material constants; C1 and C2 values in order to observe the behavior and pattern of the stress-stretch graph for silicone-kenaf composite. There were no previous studies done in regards to assess the mechanical behaviour of the stress-stretch curve for silicone-kenaf biocomposite by varying the Mooney-Rivlin material constants. The material constant, C1 and C2 are varied into few cases and the patterns of stress-stretch curves are studied. It was found that variations of C1 and C2 material constants could contribute differently on the mechanical properties of silicone-kenaf composite. Thus, the results and findings of this study could be further enhanced by future study to gain deeper understanding on the hyperelastic materials behaviour and Mooney-Rivlin hyperelastic constitutive model.



Edited by:

Sujan Debnath




S. H. Kamarul Bahrain and J. Mahmud, "Parametric Investigation of Mooney-Rivlin Material Constants on Silicone Biocomposite", Materials Science Forum, Vol. 882, pp. 51-55, 2017

Online since:

January 2017




* - Corresponding Author

[1] P. A. L. S. Martins, N. R. M. Jorge, and A. J. M. Ferreira. A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues. Strain, Vol. 42 (2006), pp.135-147.

DOI: 10.1111/j.1475-1305.2006.00257.x

[2] O. A. Shergold, N. A. Fleck, and D. Radford. The Uniaxial Stress Versus Strain Response of Pig Skin and Silicone Rubber at Low and High Strain Rates. International Journal of Impact Engineering, Vol. 32(9) (2006), p.1384–1402.

DOI: 10.1016/j.ijimpeng.2004.11.010

[3] N. F. A. Manan, J. Mahmud, and A. Jumahat. Biomechanical Behaviour of Bovine Skin: An Experiment-Theory Integration and Finite Element Simulation. Jurnal Teknologi, Vol. 4 (2015), p.185–190.

[4] N. F. A. Manan, J. Mahmud, and M. H. Ismail. Quantifying the Biomechanical Properties of Bovine Skin under Uniaxial Tension. Journal of Medical and Bioengineering, Vol. 2(1) (2013) 45–48.

DOI: 10.12720/jomb.2.1.45-48

[5] R. B. Groves, S. A. Coulman, J. C. Birchall, and S. L. Evans. An anisotropic, Hyperelastic Model for Skin: Experimental Measurements, Finite Element Modelling and Identification of Parameters for Human and Murine Skin. Journal of the Mechanical Behaviour and Biomedical Materials, Vol. 18 (2013).

DOI: 10.1016/j.jmbbm.2012.10.021

[6] J. Mahmud, C. Holt, S. Evans, N. F. A. Manan, and M. Chizari. A Parametric Study and Simulations in Quantifying Human Skin Hyperelastic Parameters. Procedia Engineering, Vol. 41 (2012), p.1580–1586.

DOI: 10.1016/j.proeng.2012.07.353

[7] A. Karimi, M. Navidbakhsh, A. Shojaei, K. Hassani, and S. Faghihi. Study of Plaque Vulnerability in Coronary Artery Using Mooney–Rivlin Model: A Combination of Finite Element and Experimental Method. Biomedical Engineering: Applications, Basis and Communications, Vol. 26(1)(2014).

DOI: 10.4015/s1016237214500136

[8] L. Meunier, G. Chagnon, D. Favier, L. Orgéas, and P. Vacher. Mechanical Experimental Characterisation and Numerical Modelling of an Unfilled Silicone Rubber. Polymer Testing, Vol. 27(6) (2008), p.765–777.

DOI: 10.1016/j.polymertesting.2008.05.011

[9] S. K. Sadrnezhaad, N. H. Nemati, and R. Bagheri. Improved Adhesion of NiTi Wire to Silicone Matrix for Smart Composite Medical Applications. Materials and Design, Vol. 30(9) (2009), p.3667–3672.

DOI: 10.1016/j.matdes.2009.02.016

[10] N. Fazli, A. Manan, S. Noor, A. Mohd, N. N. Azmi, and J. Mahmud. Numerical Investigation of Ogden And Mooney-Rivlin Material Parameters. ARPN Journal of Engineering and Applied Sciences, Vol. 10(15) (2015), p.6329–6335.

[11] P. Wang, S. Geng, and T. Ding. Effects of Carboxyl Radical on Electrical Resistance of Multi-Walled Carbon Nanotube Filled Silicone Rubber Composite Under Pressure. Composites Science and Technology, Vol. 70(10)(2010), p.1571–1573.

DOI: 10.1016/j.compscitech.2010.05.008

[12] J. H. Bae and S. H. Chang. A Study on the Mechanical Behavior of Silicone-Organically Modified Montmorillonite Composite Under Human Body Simulated Environment. Composites Science and Technology, Vol. 85 (2013), p.90–97.

DOI: 10.1016/j.compscitech.2013.06.008

[13] R. Keqi, L. Ceng, T. Iavs, and H. Close. Rubber Creep Modelling Based on Modified Hyperelastic Models Using Abaqus. SIMULA UK Regional User Meeting, (2015), p.2–7.

[14] S. N. A. M. Noor and J. Mahmud. Modelling and Computation of Silicone Rubber Deformation Adapting Neo-Hookean Constitutive Equation. 2015 Fifth International Conference on Communication Systems and Network Technologies, (2015), p.1323–1326.

DOI: 10.1109/csnt.2015.276

[15] R. O. Benevides and L. C. S. Nunes. Mechanical Behavior of the Alumina-Filled Silicone Rubber Under Pure Shear at Finite Strain. Mechanics of Materials, Vol. 85 (2015), p.57–65.

DOI: 10.1016/j.mechmat.2015.02.011

[16] X. Chen, S. Wang, C. Cao, and S. Liu. Influence of Phosphor Amount on Microstructure and Damage Evolution of Silicone/Phosphor Composite in Light-Emitting Diodes Packaging. Composites Science and Technology, Vol. 107 (2015), p.98–106.

DOI: 10.1016/j.compscitech.2014.12.004

Fetching data from Crossref.
This may take some time to load.