Structural and Morphological Analysis of Nanocomposite SnO2-Graphene Synthesized by Sol-Gel Method

Abstract:

Article Preview

Gas sensor performance is strongly influenced by the crystal structure, composition and morphology of the material used. In this paper, structural and morphological analysis of nanocomposite SnO2-Graphene synthesized by Sol-Gel method with the composition of 1:1, 1:2, 1:3 will be described. Analysis of the morphology and structure of nanocomposite SnO2-Graphene is investigated using XRD, SEM and TEM with the purpose of obtaining the crystal structure, morphology, composition and size of the resulting particles. The XRD results showed that the formation of the crystalline phase can be recorded at 2θ = 26.64; 34.2; 51.92, where the results of SEM show that the nanomaterial SnO2 has tetragonal structure while the graphene has hexagonal structure. The nanocomposite SnO2-Graphene has nanorod pattern. Furthermore, the surface analysis using TEM of nanocomposite SnO2-Graphene shows that the surface has the rod diameter in the range of 5-8 nm. The unique nanopattern of SnO2-Graphene will have potential applicability as the sensing material for CO gas sensor.

Info:

Periodical:

Edited by:

Prof. Osman Adiguzel, Mário S. Ming Kong and Kai Li

Pages:

32-40

DOI:

10.4028/www.scientific.net/MSF.887.32

Citation:

A. Debataraja et al., "Structural and Morphological Analysis of Nanocomposite SnO2-Graphene Synthesized by Sol-Gel Method", Materials Science Forum, Vol. 887, pp. 32-40, 2017

Online since:

March 2017

Export:

Price:

$38.00

[1] Yanhong Chang, Yunfeng Yao, Bin Wang, Hui Luo, Tianyi Li, Linjie Zhi, Reduced Graphene Oxide Mediated SnO2 Nanocrystals for Enhanced Gas-sensing Properties, J. Mater. Sci. Technol, 29(2), 157-160. (2013).

DOI: 10.1016/j.jmst.2012.11.007

[2] Giovanni Neri, Salvatore Gianluca Leonardi, Mariangela Latino, Nicola Donato, Seunghwan Baek, Donato E. Conte, Patrícia A. Russo, Nicola Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2, Sensors and Actuators B 179. 61–68, (2013).

DOI: 10.1016/j.snb.2012.10.031

[3] Matthias Batzill, Surface Science Studies of Gas Sensing Materials: SnO2, Sensors, 6, 1345-1366. (2006).

DOI: 10.3390/s6101345

[4] Jianwei Gong, Quanfang Chen, Sol-Gel Prepared Single Wall Carbon Nanotube SnO2 Thin Film for Micromachined Gas Sensor, NSTI-Nanotech, Vol. 3, (2004).

[5] H.N. Lim, R. Nurzulaikha, I. Harrison, S.S. Lim, W.T. Tan, M.C. Yeo, M.A. Yarmo, N.M. Huang, Preparation and characterization of tin oxide, SnO2 nanoparticles decorated graphene, Elsevier, Ceramics International 38, 4209–4216. (2012).

DOI: 10.1016/j.ceramint.2012.02.004

[6] C. Liewhiran, at., al., Ultra-sensitive H2 sensors based on flame-spray-made Pd-loaded sensing SnO2 films, Sensors and Actuators B 176, 893– 905, (2013).

DOI: 10.1016/j.snb.2012.10.087

[7] Beomseok Kim, Yijiang Lu, Ami Hannon, M. Meyyappan, Jing Li. Low Temperature Pd/SnO2 Sensor for Carbon monoxide detection, Sensors and Actuators B 177, 770-775, (2013).

DOI: 10.1016/j.snb.2012.11.020

[8] K. Inyawilert, A. Wisitsoraat, C. Sriprachaubwong, A. Tuantranot, S. Phanichant, C. Liewhiran, Rapid ethanol-loaded flame-made In-doped SnO2 composite film, Sensors and Actuators B 209, 40-55, (2015).

DOI: 10.1016/j.snb.2014.11.086

[9] J. Mazloom, F.E. Ghodsi, Spectroscopy, Microscopic, and electrical Characterization of Nanostructured SnO2: Co thin films prepared by sol-gel Spin Coating technique, Materials Research Bulletin 48, 1468-1476, (2013).

DOI: 10.1016/j.materresbull.2012.12.069

[10] Sumanta Kumar Tripathy, and Bhabani Prasad Hota, Carbon Monoxide Sensitivity of Tin Oxide Thin Film Synthesized by Sol-Gel Method, The African Review of Physics 7: 0047, (2012).

[11] Sumanta Kumar Tripathy1, and Bhabani Prasad Hota, Carbon Monoxide Sensitivity of Tin Oxide Thin Film Synthesized by Sol-Gel Method, The African Review of Physics 7: 0047, (2012).

[12] Humaira Seema, K Christian Kemp, Vimlesh Chandra and Kwang S Kim, Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology 23, 355705 (8pp), (2012).

DOI: 10.1088/0957-4484/23/35/355705

[13] Qianqian Lin, Yang Li, Mujie Yang, Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature, Sensors and Actuators B 173, 139–147 (2012).

DOI: 10.1016/j.snb.2012.06.055

[14] Hao Zhang, Jianchao Feng, Teng Fei, Sen Liu, Tong Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature, Sensors and Actuators B 190, 472–478(2014).

DOI: 10.1016/j.snb.2013.08.067

[15] Mauro Epifani, Jordi Arbiol, Eva Pellicer, Elisabetta Comini, Pietro Siciliano, Guido Faglia, and Joan R. Morante, Synthesis and Gas-Sensing Properties of Pd-Doped SnO2 Nanocrystals. A Case Study of a General Methodology for Doping Metal Oxide Nanocrystals, Crystal Growth & Design, Vol. 8, No. 5(2008).

DOI: 10.1021/cg700970d

[16] H. B. Huo, C. Wang, F. D. Yan, H. Z. Ren, and M. Y. Shen, Room Temperature SnO2 Thin Film Gas Sensor Fabricated on Si Nanospikes, Journal of Nanoscience and Nanotechnology, Vol. 9, 1–3(2009).

DOI: 10.1166/jnn.2009.1218

[17] Brian Yuliarto, Lukman Nulhakim, Muhammad Fazri Ramadhani, Muhammad Iqbal, Nugraha, Suyatman, and Ahmad Nuruddin, Improved Performances of Ethanol SensorFabricated on Al-Doped ZnO Nanosheet Thin Films, IEEE SENSORS JOURNAL, VOL. 15, NO. 7(2015).

DOI: 10.1109/jsen.2015.2410995

[18] Ni Luh Wulan Septiania, and Brian Yuliarto, Review-The Development of Gas Sensor Based on Carbon Nanotubes, Journal of The Electrochemical Society, 163 (3) B97-B106 (2016).

DOI: 10.1149/2.0591603jes

[19] Chang Sup Moon, Hae-Ryong Kim, Graeme Auchterlonie, Highly Sensitive and fast responding CO sensor using SnO2 nanosheets, Sensors and Actuators B 131, 556-564(2008).

DOI: 10.1016/j.snb.2007.12.040

[20] Tan Rui-qin, Guo Yan-qun, Zhao Jun-hua, Li Yue, Xu Tie-feng, Song Wei-jie, Synthesis, Characterization and sensing properties of Pd-dopping SnO2 nano particles, Trans. Nanoferrous Met. Soc. China 21, 1568-1573(2011).

DOI: 10.1016/s1003-6326(11)60898-4

[21] J. Mazloom, F.E. Ghodsi, Spectroscopy, Microscopic, and electrical Characterization of Nanostructured SnO2: Co thin films prepared by sol-gel Spin Coating technique, Materials Research Bulletin 48, 1468-1476(2013).

DOI: 10.1016/j.materresbull.2012.12.069

[22] Bei Wang, Dawei Su, Jinsoo Park, Hyojun Ahn, and Guoxiu Wang, Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries, Nanoscale Research Letters, 7: 215 (2012).

DOI: 10.1186/1556-276x-7-215

[23] S.H. Ng, D. I. dos Santos, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou, H.K. Liu, Polyol-mediated synthesis of ultrafine tin oxide nanoparticles for reversible Li-ion storage, Electrochemistry Communications 9, 915–919(2007).

DOI: 10.1016/j.elecom.2006.12.007

[24] Ghazaleh Allaedini1, Siti Masrinda Tasirin, Meor Zainal Meor Talib, Payam Aminayi, Ifa Puspasari, Comparative study on the microstructure and photoluminescence properties of SnO2 nano particles prepared by different methods, Applied Mechanics and Materials Vols 719-720, pp.132-136(2015).

DOI: 10.4028/www.scientific.net/amm.719-720.132

[25] Pi-Guey Su, Ching-Hsuan Wei a, Wei-Luen Shiu, Fabrication of SnO2-Reduced Graphene Oxide Nanocomposite Films for Sensing NO2 Gas at Room-Temperature, International Journal of Scientific Engineering and Technology, Volume No. 4 Issue No. 4, pp: 268-272 (2015).

DOI: 10.17950/ijset/v4s4/411

[26] Zhefei Li, Qi Liu, Yadong Liu, Le Xin, Fan Yang, Yun Zhou, Hangyu Zhang, Lia A. Stanciu, and Jian Xie, Facile preparation of graphene/SnO2 xerogel hybrids as the anode material in Li-ion batteries, ACS Applied Materials & Interfaces (2015).

DOI: 10.1021/acsami.5b05819

[27] A. Dioguez, A. Romano-Rodriguez, J.R. Morantea, U. Weimar, M. Schweizer-Berberich, W. Gopel, Morphological analysis of nanocrystalline SnO2 for gas sensor applications, Sensors and Actuators B 31, 1-8 (1996).

DOI: 10.1016/b978-0-444-82312-0.50030-x

[28] Lei Li, Shuijian He, Minmin Liu, Chunmei Zhang, and Wei Che, Three-Dimensional Mesoporous Graphene Aerogel-Supported SnO2 Nanocrystals for High-Performance NO2 Gas Sensing at Low Temperature, Anal. Chem. 87, 1638 −1645, (2015).

DOI: 10.1021/ac503234e

In order to see related information, you need to Login.