Effect of Temperature towards the Corrosion Behavior of Titania Nanotube Anodized in H2O2-Based Organic Electrolyte

Abstract:

Article Preview

Hydrogen peroxide (H2O2) is a stronger oxidizing agent relative to the commonly used H2O in anodization of Titania Nanotube (TNT). Despite having higher oxide growth rate and more superior photocatalytic property, the substitution of H2O2 as oxygen source is sometimes accompanied with foil corrosion. In this work, it is shown that foil corrosion is originated from temperature elevation during anodization process. Conversely, foil corrosion can be prevented by monitoring the anodization temperature. Essentially, the corrosion of foil is not directly influenced by the type of oxidation source used. Foil corrosion occurs due to temperature elevation when using H2O2 as oxidation source.

Info:

Periodical:

Edited by:

Zainal Arifin Ahmad, Meor Yusoff Meor Sulaiman, Mohd Ambar Yarmo, Fauziah Abd Aziz, Khairul Nizar Ismail, Norazharuddin Shah Abdullah, Yusof Abdullah, Nik Akmar Rejab and Mohsen Ahmadipour

Pages:

273-277

Citation:

K. C. Lee and S. Sreekantan, "Effect of Temperature towards the Corrosion Behavior of Titania Nanotube Anodized in H2O2-Based Organic Electrolyte", Materials Science Forum, Vol. 888, pp. 273-277, 2017

Online since:

March 2017

Export:

Price:

$41.00

* - Corresponding Author

[1] D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes, Materials Science and Engineering: R: Reports, 74(12) (2013) 377-406.

DOI: https://doi.org/10.1016/j.mser.2013.10.001

[2] P. Hoyer, Formation of a Titanium Dioxide Nanotube Array. Langmuir, 12(6) (1996) 1411-1413.

DOI: https://doi.org/10.1021/la9507803

[3] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9(12) 1999 2971-2972.

DOI: https://doi.org/10.1039/a906005g

[4] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube. Langmuir, 14(12) (1998) 3160-3163.

DOI: https://doi.org/10.1021/la9713816

[5] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania Nanotubes Prepared by Chemical Processing. Advanced Materials, 11 (1999) 1307-1311.

DOI: https://doi.org/10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.3.co;2-8

[6] T. Sekino, Inorganic and Metallic Nanotubular Materials, in Recent Technologies and Applications, T. Kijima, Editor. 2010, Springer-Verlag Berlin Heidelberg: London New York. 295.

[7] Z. Y. Yuan, B. L. Su, Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1-3) (2004) 173-183.

DOI: https://doi.org/10.1016/j.colsurfa.2004.04.030

[8] Y. C. Lim, Z. Zainal, W. T. Tan, M. Z. Hussein, Anodization Parameters Influencing the Growth of Titania Nanotubes and Their Photoelectrochemical Response, International Journal of Photoenergy, 2012 (2012) 9.

DOI: https://doi.org/10.1155/2012/638017

[9] S. Sreekantan, C. W. Lai, Z. Lockman, Extremely Fast Growth Rate of TiO2 Nanotube Arrays in Electrochemical Bath Containing H2O2, J. Electrochem. Soc. 158(12) (2011) C397-C402.

DOI: https://doi.org/10.1149/2.020112jes

[10] B. Chong, D. L. Yu, M. Q. Gao, H. W. Fan, C. Y. Yang, W. H. Ma, S. Y. Zhang, X. F. Zhu, Formation Mechanism of Gaps and Ribs Around Anodic TiO2 Nanotubes and Method to Avoid Formation of Ribs, J. Electrochem. Soc. 162(4) (2015) H244-H250.

DOI: https://doi.org/10.1149/2.0721504jes

[11] S. Joseph, P. Sagayaraj, A cost effective approach for developing substrate stable TiO2 nanotube arrays with tuned morphology: a comprehensive study on the role of H2O2 and anodization potential, New Journal of Chemistry, 39(7) (2015) 5402-5409.

DOI: https://doi.org/10.1039/c5nj00565e

[12] A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the Least Known TiO2 Photocatalyst. Catalysts, 3(1) 2013 36.

DOI: https://doi.org/10.3390/catal3010036

[13] Y. Wang, L. Li, X. Huang, Q. Li, G. Li, New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Advances, 5(43) (2015) 34302-34313.

DOI: https://doi.org/10.1039/c4ra17076h