Study on Processing and Characterization of Calcium Phosphate Bioceramics


Article Preview

The calcium phosphate bioceramics are widely used for the bone reconstruction because of their mineralogical similarities. This work aimed to obtain a biphasic calcium phosphate from hydroxyapatite nanoparticles synthesized by sonochemical technique and processed under two different conditions. The samples were uniaxially cold-pressed at 200MPa and sintered at 900°C/2h (CP900) and 1000°C/2h (CP1000) with heating rates of 2°C/min and 5°C/min, respectively. The characterizations were performed by X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and theoretical elastic modulus. From the geometric method, the relative density, porosity and linear shrinkage were measured. The results showed that the studied processing conditions were useful for achieving samples formed by a biphasic calcium phosphate with 80% β-tricalcium phosphate and 20% hydroxyapatite. The CP900 and CP1000 samples presented a theoretical elastic modulus of 34.7 GPa and 53.1 GPa, respectively, which are higher than that found to the compact bone. In addition, the sintering at 900oC was sufficient to promote neck formation and particle coalescence, maintaining adequate porosity (47.5%) for bone tissue ingrowth into pores.



Edited by:

Aloisio Nelmo Klein, Uílame Umbelino Gomes, Nério Vicente Jr. and Dr. Henning Zoz




L. F. Cóta et al., "Study on Processing and Characterization of Calcium Phosphate Bioceramics", Materials Science Forum, Vol. 899, pp. 254-259, 2017

Online since:

July 2017




* - Corresponding Author

[1] S.V. Dorozhkin: Biomaterials Vol. 31 (2010), p.1465.

[2] C. Duan, J. Wang, S. Zhou, B. Feng, L. Xiong, J. Wenj: J. Sol-Gel Sci. Technol. Vol. 63 (2012), p.126.

[3] F. Barandehfard, M. Keyanpour-rad, A. Hosseinnia, A.M. Kazemzadeh, M.R. Vaezi, A. Hassanjani-Roshan: J. Ceram. Process. Res. Vol. 13 (2012), p.437.

[4] M.C. Barbosa, N.R. Messmer, T.R. Brazil, F.R. Marciano, A.O. Lobo: Mater. Sci. Eng. C. Mater. Biol. Appl. Vol. 33 (2013), p.2620.

[5] H. Xu, B. Zeiger, K. Suslick: Chem. Soc. Rev. Vol. 42 (2013), p.2555.

[6] J. Chen, Y. Wang, X. Chen, L. Ren, C. Lai, W. He, Q. Zhang: Mater. Lett. Vol. 65 (2011), p. (1923).

[7] A. Farzadi, M. Solati-Hashjin, F. Bakhshi, A. Aminian: Ceram. Int. Vol. 37 (2011), p.65.

[8] T.L. Arinzeh, S.J. Peter, M.P. Archambault, C. Van des Bos, S. Gordon, K. Kraus, A. Smith, S. Kadiyala: J. Bone Joint Surg. Am. Vol. 85 (2003), p. (1927).

[9] R.Z. Legeros: Calcium phosphates in oral biology and medicine, Monogra. Oral Sci. Vol. 15 (1991), pp.1-201.

[10] L.F. Cóta: Calcium phosphate nanoparticles bioceramics processing for bone regeneration. Doctoral (Thesis). Rio de Janeiro, 2015. Universidade Federal do Rio de Janeiro (UFRJ/COPPE). (RJ).


[11] E. Victoria, F. Gnanam: Trends Biomater. Artif. Organs. Vol. 16 (2002), p.12.

[12] A.S. Wagh, R.B. Poeppel, J.P. Singh: J. Mater. Sci. Vol. 26 (1991), p.3862.

[13] O. Prokopiev, I. Sevostianov: J. Mater. Sci. Eng. A Vol. 431 (2006), p.218.

[14] A. Stoch, W. Jastrzebski, A. Brozek, B. Trybalska, M. Cichocinska, E. Szarawara: J. Mol. Struct. Vols. 511-512 (1999), p.287.

[15] P. Layrolle, G. Daculsi: Physicochemistry of apatite and its related calcium phosphates, in: B. Léon, J.A. Jasen (EDs. ), Thin Calcium Phosphate Coatings for Medical Implants, Springer Science + Business Media, New York, 2009, pp.9-24.


[16] R. Vani, E. Girija, K. Elayaraja, S. Parthibam, R. Kesavamoorthy, S. Kalkura: J. Mater. Sci. Mater. Med. Vol. 20 (2009), p. S43.

[17] W. Urbaniak-Domagala, The use of the spectrometric technique FTIR-ATR to examine the polymers surface. In: M.A. Farrukh (Ed. ), Advanced Aspects of Spectroscopy, In Tech, Rijeka Croatia, 2012 pp.85-104.


[18] Y. Pang, X. Bao: J. Eur. Ceram. Soc. Vol. 23 (2003), p.1697.

[19] L. Boilet, M. Descamps, E. Rguiti, A. Tricoteaux, J. Lu, F. Petit, V. Lardot, F. Cambier, A. Leriche: Ceram. Int. Vol. 39 (2013), p.283.


Fetching data from Crossref.
This may take some time to load.