Quantitative Evaluation of Texture and Dislocations during Annealing after Hot Deformation in Austenitic Steel Using Neutron Diffraction

Abstract:

Article Preview

Microstructural change during hot compressive deformation at 700 oC followed by isothermal annealing for a Fe-32Ni austenitic alloy was monitored using in situ neutron diffraction. The evolution of deformation texture with 40% compression and its change to recrystallization texture during isothermal annealing were presented by inverse pole figures for the axial and radial directions. The change in dislocation density was tracked using the convolutional multiple whole profile fitting method. To obtain the fitting results with good accuracies, at least 60 s time-interval for slicing the event-mode recorded data was needed. The average dislocation density in 60 s after hot compression was determined to be 2.8 x 1014 m-2, and it decreased with increasing of annealing time.

Info:

Periodical:

Edited by:

Thomas Holden, Tamas Ungar, Thomas Buslaps and Thilo Pirling

Pages:

25-30

Citation:

Y. Tomota et al., "Quantitative Evaluation of Texture and Dislocations during Annealing after Hot Deformation in Austenitic Steel Using Neutron Diffraction", Materials Science Forum, Vol. 905, pp. 25-30, 2017

Online since:

August 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] S. Morooka, Y. Tomota and T. Kamiyama: ISIJ Int., 48(2008), 525-530.

[2] M. Ojima, Y. Adachi, S. Suzuki and Y. Tomota: Acta mater., 59(2011), 4177-4185.

[3] Y. Tomota, P.G. Xu, E.C. Oliver, A. Paradowska: In situ Neutron Diffraction during Thermo-mechanically Controlled Process for Low Alloy Steels, In situ Studies with Photons, Neutrons and Electron Scattering, edited by T. Kannengiesser, S.S. Babu, Y. Komizo and A.J. Ramirez: Springer (2010).

DOI: https://doi.org/10.1007/978-3-642-14794-4_12

[4] T. Ungár, J. Gubicza, G. Ribárik, A. Borbely: J Appl Cryst., 34(2001), 298.

[5] G. Ribárik, J. Gubicza, T. Ungár: Mater Sci Eng., A387-389(2004), 343.

[6] G. Ribárik: Dr. Thesis at Etövös Loránd University, (2008).

[7] T. Ungár, A.D. Stoica, G. Tichy, X.L. Wang: Acta mater., 66(2014), 251-261.

[8] Y. Tomota, S. Sato, P.G. Xu, S. Harjo, W. Gong and T. Kawasaki: presented at MECA SENS 8 (2015), Collected abstract, p.73. Grenoble, France.

[9] S. Harjo, T. Ito, K. Aizawa, H. Arima, J. Abe, A. Moriai, T. Iwahashi, and T. Kamiyama: Mater. Sci. Forum, 2011, vol. 681, pp.443-446.

DOI: https://doi.org/10.4028/www.scientific.net/msf.681.443

[10] T. Ito, T. Nakatani, S. Harjo, H. Arima, J. Abe, K. Aizawa and A. Moriai: Mater. Sci. Forum, 652 (2010) 238-242.

DOI: https://doi.org/10.4028/www.scientific.net/msf.652.238

[11] T. Ungár: Mater. Sci. Eng. A, 309(2001), 14-22.

[12] F. Yin, T. Hanamura,O. Umezawa and K. Nagai: Mater. Sci. Eng., A 354(2003), 31-39.

[13] S. Umezaki, Y. Murata, K. Nomura and K. Kubushiro: J. Japan Inst. Met. Mater., 78(2014), 218-224.

[14] T. Ungár, I. Dragomir, A. Revesz and A. Borbely: J. Appl. Cryst. 32(1999), 992-1002.

[15] S. Harjo, A. Shibata, N. Park, S. Yamazaki, S. Lin, T. Katsuno, Y. Matsui, T. Kawasaki, K. Oishi, K. Aizawa and N. Tsuji: presented at MECA SENS 8 (2015), Collected abstract, p.110. Grenoble, France.

Fetching data from Crossref.
This may take some time to load.