Microstructural Changes and Thermal Stability of A201, 319s and 2618 Aluminum Alloys during Thermal Exposure

Abstract:

Article Preview

Turbocharger compressor wheels are often made of 3XX cast aluminum alloys and forged 2618 alloy. These age hardening aluminum alloys have high strength-to-weight ratio at ambient temperature. However, the strength of the aluminum alloys decreases rapidly when applied at high temperatures, such as for turbochargers where application temperature can be above 200 °C. The major reason is that the fine precipitated phases coarsen rapidly tending to their equilibrium states. The thermal stability of the 319s-T61, A201-T71 and 2618-T6 alloys were compared in this paper. The three alloys were exposed at 200 °C for 100 h during heat treatment. Hardness, tensile tests and TEM were carried out to investigate the mechanical properties and microstructure variation of these three alloys. The results indicated that the A201 alloy exhibited the best thermal stability among the three alloys and 319s alloy is the weakest one. TEM observation showed that with the increase of the exposure time, the strengthening precipitates phase θ′ in A201/319s alloys and S′ in 2618 alloy coarsened and then transformed to stable θ phase and S phase, respectively, while the primary strengthening phase Ω in A201 remained stable, which may be contributed the higher thermal stability of A201 than 319s and 2618.

Info:

Periodical:

Edited by:

Prof. Ya Fang Han

Pages:

55-62

Citation:

J. Z. Gao et al., "Microstructural Changes and Thermal Stability of A201, 319s and 2618 Aluminum Alloys during Thermal Exposure", Materials Science Forum, Vol. 913, pp. 55-62, 2018

Online since:

February 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Q Zhu, S.P. Midson, Semi-solid moulding: Competition to cast and machine from forging in making automotive complex components, Trans Nonferrous Met Soc China. 20. S3 (2010): 1042-1047.

DOI: https://doi.org/10.1016/s1003-6326(10)60628-0

[2] G. Wallace, A.P. Jackson, Q Zhu, S.P. Midson, High-quality aluminum turbocharger impellers produced by thixocasting, Trans Nonferrous Met Soc China. 20. 9 (2010): 1786-1791.

DOI: https://doi.org/10.1016/s1003-6326(09)60375-7

[3] Q Zhu, S.P. Midson, W. M Chng, H. V Atkinson, Casting and Heat Treatment of Turbocharger Impellers Thixocast from Alloy 201, Solid State Phenom. (2013) 192-556.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.192-193.556

[4] A.K. Mukhopadhyay, On the nature of the second phase particles present in an as-cast Al-Cu-Mg-Ag alloy, Scr Mater. 41. 6 (1999) 667-672.

DOI: https://doi.org/10.1016/s1359-6462(99)00110-4

[5] J.E. Hatch, Aluminum: properties and physical metallurgy, Ohio: ASM International. (1984) 323.

[6] D Liu, H.V. Atkinson, P Kapranos, W Jirattiticharoean, H Jones, Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys, Mater Sci Eng A. 361. 1–2 (2003) 213-224.

DOI: https://doi.org/10.1016/s0921-5093(03)00528-8

[7] I.J. Polmear, The Effects of small additions of silver on aging of some aluminum alloys, Trans Metall Soc AIME. 230. 6 (1964) 1331.

[8] K.M. Knowles, W.M. Stobbs, The structure of {111} age-hardening precipitates in Al-Cu-Mg-Ag alloys, Acta Crystallogr Sect B, Struct Sci. 44. 3 (2010) 207-227.

DOI: https://doi.org/10.1107/s0108768187012308

[9] B.C. Muddle, I.J. Polmear, The precipitate Ω phase in Al-Cu-Mg-Ag alloys, Acta Metall. 37. 3 (1989) 777-789.

DOI: https://doi.org/10.1016/0001-6160(89)90005-9

[10] S.P. Ringer, K Hono, I.J. Polmear, T Sakurai, Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu: Mg ratios, Acta Mater. 44. 44 (1996) 1883-1898.

DOI: https://doi.org/10.1016/1359-6454(95)00314-2

[11] C.H. Chang, S.L. Lee, J.C. Lin, R.R. Jeng, The Effect of Silver Content on the Precipitation of the Al-4. 6Cu-0. 3Mg Alloy, Mater Trans. 46. 2 (2005) 236-240.

DOI: https://doi.org/10.2320/matertrans.46.236

[12] E Sjölander, S Seifeddine, The heat treatment of Al-Si-Cu-Mg casting alloys, J Mater Process Technol. 210. 10 (2010) 1249-1259.

DOI: https://doi.org/10.1016/j.jmatprotec.2010.03.020

[13] X.G. Hu, Q Zhu, H.X. Lu, F Zhang, D.Q. Li, Microstructural evolution and thixoformability of semi-solid aluminum 319s alloy during re-melting, J Alloys Compd. 649 (2015) 204-210.

DOI: https://doi.org/10.1016/j.jallcom.2015.07.121

[14] D.Q. Li, X.K. Liang, F.B. Yang, Y.F. He, F Zhang, Q Zhu, S.M. Zhang, Evolution of Microstructure and Mechanical Properties of the Thixo-Diecast 319s Alloy during Heat Treatment, Mater Sci Forum. 765 (2013) 511-515.

DOI: https://doi.org/10.4028/www.scientific.net/msf.765.511

[15] I.N.A. Oguocha, S Yannacopoulos, Y Jin, The structure of AlxFeNi phase in Al-Cu-Mg-Fe-Ni alloy (AA2618), J Mater Sci. 31. 21 (1996) 5615-5621.

DOI: https://doi.org/10.1007/bf01160806

[16] S.C. Bergsma, X Li, M.E. Kassner, Effects of thermal processing and copper additions on the mechanical properties of aluminum alloy ingot AA2618, J Mater Eng Perform. 5. 1 (1996) 100-102.

[17] J.H. Wang, D.Q. Yi, Preparation and properties of alloy 2618 reinforced by submicron AIN particles, J Mater Eng Perform. 15. 5 (2006) 596-600.

[18] F Nový, M Janeček, R Král, Microstructure changes in a 2618 aluminium alloy during ageing and creep, J Alloys Compd. 487. 1–2 (2009) 146-151.

DOI: https://doi.org/10.1016/j.jallcom.2009.08.014

[19] A.K. Mukhopadhyay, On the nature of the second phase particles present in an as-cast Al-Cu-Mg-Ag alloy, Scr Mater. 41. 6 (1999) 667-672.

DOI: https://doi.org/10.1016/s1359-6462(99)00110-4

[20] Y.T. Chen, G.Y. Nieh, J.H. Wang, T.F. Wu, S.L. Lee, Effects of Cu/Mg ratio and heat treatment on microstructures and mechanical properties of Al–4. 6Cu–Mg–0. 5Ag alloys, Mater Chem Phys. 162 (2015) 764-770.

DOI: https://doi.org/10.1016/j.matchemphys.2015.07.001

[21] A.M.A. Mohamed, F.H. Samuel, S.A. Kahtani, Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys, Mater Sci Eng A. 543. 5 (2012) 22-34.

DOI: https://doi.org/10.1016/j.msea.2012.02.032

[22] H Yang, S Ji, W Yang, Y Wang, Z Fan, Effect of Mg level on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys, Mater Sci Eng A. 642. 5 (2015) 340-350.

DOI: https://doi.org/10.1016/j.msea.2015.07.008

[23] J.Y. Hwang, R Banerjee, H.W. Doty, M.J. Kaufman, The effect of Mg on the structure and properties of Type 319 aluminum casting alloys, Acta Mater. 57. 4 (2009) 1308-1317.

DOI: https://doi.org/10.1016/j.actamat.2008.11.021

[24] I.J. Polmear, M.J. Couper, Design and development of an experimental wrought aluminum alloy for use at elevated temperatures, Metall Trans A. 19. 4 (1988) 1027-1035.

DOI: https://doi.org/10.1007/bf02628387

[25] S.P. Ringer, W Yeung, B.C. Muddle, I.J. Polmear, Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures, Acta Metall Mater. 42. 5 (1994) 1715-1725.

DOI: https://doi.org/10.1016/0956-7151(94)90381-6

[26] Y.C. Chang, J.M. Howe, Composition and stability of Ω phase in an Al-Cu-Mg-Ag Alloy, Metalll Trans A. 24. 7 (1993) 1461-1470.

[27] C.R. Hutchinson, X Fan, S.J. Pennycook, G.J. Shiflet, On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys, Acta Mater. 49. 14 (2001) 2827-2841.

DOI: https://doi.org/10.1016/s1359-6454(01)00155-0

[28] S. Singh, D.B. Goel, Influence of thermomechanical ageing on tensile properties of 2014 aluminum alloy, J Mater Sci. 25. 9 (1990) 3894-3900.

DOI: https://doi.org/10.1007/bf00582456

Fetching data from Crossref.
This may take some time to load.