Fabrication and Characterization of Permanent Magnetic SmCo5 Thin Films by SQUID Magnetometer


Article Preview

Fabrication of hard magnetic thin films is a key issue on the development of new micro electro mechanical systems. As the magnetically hard SmCo thin-films offer excellent intrinsic magnetic properties, such as moderate saturation magnetization, large magnetic anisotropy, and high Curie temperature, they are considered as a promising candidate to be used for novel MEMS applications. In this work, SmCo5 thin films with Cu underlayer were grown onto Si (100) substrate at room temperature by RF magnetron sputtering technique. The samples were annealed at 400 ̊C and 500 ̊C under Ar atmosphere condition. Microstructural and magnetic properties of sputtered SmCo5 thin films were investigated by a number of advanced characterization tools and techniques. Phase composition of SmCo5 thin films was analyzed by grazing incident X-ray diffraction (GIXRD) with Cu-Kα radiation. Surface morphology was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Magnetic force microscopy (MFM) technique was used to take stray-field images of SmCo5 thin films, and finally magnetic properties were investigated to explain the coercivity of SmCo5 thin films using superconducting quantum interference device (SQUID) as a magnetometer.



Edited by:

A.G. Mamalis, Masato Enokizono, Antonios Kladas, T. Sawada, Mustafa Güden and Prof. Mustafa M. Demir




M. Kuru et al., "Fabrication and Characterization of Permanent Magnetic SmCo5 Thin Films by SQUID Magnetometer", Materials Science Forum, Vol. 915, pp. 16-21, 2018

Online since:

March 2018




* - Corresponding Author

[1] S. Takei, A. Morisako, M. Matsumoto, Journal of Applied Physics 87 (2000) 6968.

[2] V. Neu, S.A. Shaheen, Journal of Applied Physics 86 (1999) 7006.

[3] H. Kronmuller, D. Goll, Scripta Materialia 48 (2003) 833.

[4] A. Yan, A. Bollero, K.H. Muller, O. Gutfleisch, Applied Physics Letters 80 (2002) 1243.

[5] O. Kazuhiro, IEEETransactionson Magnetics 36 (2000)16.

[6] L. Peng, H.W. Zhang, Y.L. Liu, J.Q. Xiao, Journal of Magnetism and Magnetic Materials 320 (2008) 3234.

[7] J.Y. Wang, M.K. Ghantasala, D.K. Sood, P.J. Evans, Study of influence of underlayer on the properties of magnetron sputtered samarium cobalt thin films, Thin Solid Films 489 (2005) 192 – 199.

DOI: https://doi.org/10.1016/j.tsf.2005.05.033

[8] J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, Microsensors MEMS and Smart Devices, (Wiley, New York, 2002).

DOI: https://doi.org/10.1002/9780470846087.ch14

[9] A. Walter, C. Marcoux, B. Desloges, R. Grechishkin, D. Givord, N.M. Dempsey, Journal of Magnetism and Magnetic Materials 321 (2009) 590.

[10] T. Budde, H.H. Gatzen, Journal of Applied Physics 99 (2006) 08N304.

[11] A. Yan, A. Bollero, K.H. Muller, O. Gutfleisch, Journal of Applied Physics 91 (2000) 8825.

[12] L. Peng, H.W. Zhang, Q.H. Yang, Y.X. Li, Y.Q. Song, J. Shen, Journal of Applied Physics 105 (2009) 063915.

[13] G. Xue, L. Peng, H.W. Zhang, Chinese Physics Letters 27 (2010) 017501.

[14] H. Zhao, H. Wang, X. Liu, T. Zhang, J.P. Wang, Journal of Applied Physics 109 (2011), 07B715-5.

[15] J. Sayama, T. Asahi, K. Mizutani, T. Osaka, Journal of Physics D: Applied Physics 37 (2004) L1.

[16] J. Zhang, Y.K. Takahashi, R. Gopalan, K. Hono, Journal of Magnetism and Magnetic Materials 310 (2007) 1.

[17] T. Speliotis, E. Makarona, F. Chouliaras, C.A. Charitidis, C. Tsamis, D. Niarchos, Physica Status Solidi (c) 5 (2008) 3759.

DOI: https://doi.org/10.1002/pssc.200780177

[18] J.F. Liu, T. Chui, D. Dimitrov, G.C. Hadjipanayis, J. Appl. Phys. 73 (1998) 3007.

[19] J. Zhou, R. Skomski, C. Chen, G.C. Hadjipanayis, D.J. Sellmyer, Appl. Phys. Lett. 77 (2000) 1514.

[20] A.M. Gabay, W. Tang, Y. Zhang, G.C. Hadjipanayis, Appl. Phys. Lett. 78 (2001) 1595.

[21] A. Yan, A. Bollero, K.H. Muller, O. Gutfleisch, Appl. Phys. Lett. 80 (2002) 1243.

[22] L. Peng, H.W. Zhang, Q.H. Yang, Y.X. Li, Y.Q. Song, J. Shen, J. Appl. Phys. 105 (2009) 063915.

[23] G. Xue, L. Peng, H.W. Zhang, Chin. Phys. Lett. 27 (2010) 017501.

[24] E.M.T. Velu, D.N. Lambeth, Journal of Applied Physics 69 (1991) 5175.

[25] S. Tokei, S. Shomura, A. Morisako, M. Matsumoto, T. Haeiwa, Journal of Applied Physics 81 (1997) 4674.

[26] L. Peng, H. Zhang, Q. Yang, Y. Li, Y. Song, J. Shen, Journal of Applied Physics 105 (2009) 063915.

[27] Cadieu F J, Cheng T D, Wickramasekara L. Magnetic properties of Sm-Ti-Fe and Sm-Co based films. J. Appl. Phys., 1985, 57(8): 4161.

DOI: https://doi.org/10.1063/1.334651

[28] Cadieu F J, Hedge H, Chen H. High-energy product Sm-Co based sputtered films, crystal texturing, and magnetic properties. J. Appl. Phys., (1990), 67(9): 4969.

DOI: https://doi.org/10.1063/1.344719

[29] Li N, Li S, Zhang E, Wang L J. Magnetic property and microstructure of SmCo magnetic recording films. J. RareEarths, (2009), 27(5): 839.

DOI: https://doi.org/10.1016/s1002-0721(08)60346-4

[30] Takei S, Morisako A, Matsumoto M. Effect of underlayer thickness on magnetic properties of SmCo film. J. Appl. Phys. (2000), 87(9): 6968.

DOI: https://doi.org/10.1063/1.372902

[31] Neu V, Shaheen S A. Sputtered Sm-Co films microstructure and magnetic properties. J. Appl. Phys., (1999), 86(12): 7006.

[32] Peng L, Zhang H W, Yang Q H, Li Y X, Song Y Q, Shen J. Correlation between sputtering parameters and composition of Sm2Co17 based films for microelectromechanical system applications. J. Appl. Phys., (2009), 105: 063915.

DOI: https://doi.org/10.1063/1.3098230

[33] Xue G, Peng L, Zhang H W. Effect of sputtering parameters on film composition, crystal structure, and coercivity of SmCo based films deposited on Si (100) substrates. Chin. Phys. Lett., (2010), 27(1): 017501.

DOI: https://doi.org/10.1088/0256-307x/27/1/017501

[34] Y. K. Takahashi, T. Ohkubo, and K. Hono, Journal of Applied Physics 100, 053913 (2006).

Fetching data from Crossref.
This may take some time to load.