Effects of Dielectric Spacer on Absorbance Characteristics of a Dual-Band Nanoaperture Based Perfect Absorber


Article Preview

In this study, a novel perfect absorber (PA) array based on H-shaped nanoapertures for bio-sensing applications in infrared regime is presented. Proposed PA array has a dual-band spectral response, and the locations of these resonances can be adjusted by varying the geometrical dimensions and layer thicknesses of the structure. Nearly unity absorbance is obtained from the PA array for both resonances. The structure design is based on the near field plasmon coupling between the gold film layer and the top nanoaperture array. In this context, the dielectric spacer layer is used to support this plasmon coupling and the gold film on the silicon substrate is also utilized to eliminate the transmittance through the structure. Different dielectric spacers (MgF2, SiO2, and Al2O3) are used to investigate the effects of dielectric spacer on the absorbance characteristics of proposed PA array. High field enhancement is achieved by the interaction of the sharp corners of nanoapertures. The near field enhancements are more than 1500 times at the first resonance frequency, more than 1000 times at the second resonance frequency which is highly desirable for the infrared bio-sensing applications. Due to the high near-field enhancement and nearly unity absorbance, the proposed dual-band PA array with adjustable spectral responses can be useful for bio-sensing applications in infrared regime.



Edited by:

A.G. Mamalis, Masato Enokizono, Antonios Kladas, T. Sawada, Mustafa Güden and Prof. Mustafa M. Demir




A. Onur and M. Turkmen, "Effects of Dielectric Spacer on Absorbance Characteristics of a Dual-Band Nanoaperture Based Perfect Absorber", Materials Science Forum, Vol. 915, pp. 28-33, 2018

Online since:

March 2018




* - Corresponding Author

[1] N. Liu, M. Mesch, T. Weiss, M. Hentschel and H. Giessen: Infrared perfect absorber and its application as plasmonic sensor, Nano Lett., Vol. 10 no. 7, pp.2342-2348, (2010).

DOI: https://doi.org/10.1021/nl9041033

[2] K. Chen, R. Adato, and H. Altug: Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy, ACS Nano, Vol. 6 no. 9, p.7998–8006, (2012).

DOI: https://doi.org/10.1021/nn3026468

[3] A. A. Jamali and B. Witzigmann: Plasmonic Perfect Absorbers for Biosensing Applications, Plasmonics, Vol. 9, pp.1265-1270, (2014).

DOI: https://doi.org/10.1007/s11468-014-9740-1

[4] A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu and H. Giessen: Palladium-Based Plsmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing, Nano Letters, Vol. 11, pp.4366-4369, (2011).

DOI: https://doi.org/10.1021/nl202489g

[5] M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri: Design of a perfect black absorber at visible frequencies using plasmonic metamaterials, Adv Materials, Vol. 23, p.5410–5414, (2011).

DOI: https://doi.org/10.1002/adma.201102646

[6] G. Lubkowski, F. Hirtenfelder, R. Schuhmann and T. Weiland: 3D full-wave field simulations of double negative metamaterial macrostructures, Proc. of Metamaterials, p.731–734, (2007).

DOI: https://doi.org/10.1515/nano.0014.00004

[7] Z. Fang, Y. R. Zhen, L. Fan, X. Zhu, and P. Nordlander: Tunable wideangle plasmonic perfect absorber at visible frequencies, Phys Rev B, Vol. 85, p.245401, (2012).

DOI: https://doi.org/10.1103/physrevb.85.245401

[8] M. K. Hedayati, F. Faupel, and M. Elbahri: Tunable broadband plasmonic perfect absorber at visible frequency, Appl Phys A, Vol. 109, p.769–773, (2014).

DOI: https://doi.org/10.1007/s00339-012-7344-1

[9] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla: Perfect metamaterial absorber, Phys Rev. Lett., Vol. 100, no. 207402, p.1–4, (2008).

DOI: https://doi.org/10.1103/physrevlett.100.207402

[10] E. Aslan, S. Korkmaz, S. Kaya and M. Turkmen: Rotated First Iteration Square Fractal Shaped Perfect Absorbers, OSA Advanced Photonics Congress, (2015).

DOI: https://doi.org/10.1364/sensors.2015.sew1b.6

[11] Q. Y. Wen, H. W. Zhang, Q. H. Yang, Z. Chen, B. H. Zhao, Y. Long, and Y. L. Jing: Perfect metamaterial absorbers in microwave and terahertz bands, Metamaterial, p.501–512, (2012).

DOI: https://doi.org/10.5772/36828

[12] A. Cattoni, P. Ghenuche, A. M. H. Gosnet, D. Decanini, J. Chen, J. L. Pelouard, and S. Collin: λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography, Nano Lett, Vol. 11, p.3557–3563, (2011).

DOI: https://doi.org/10.1021/nl201004c

[13] M. Diem, T. Koschny, and C. M. Soukoulis. Wide-angle perfect absorber/thermal emitter in the terahertz regime, Phys Rev B, Vol. 79, pp.033101-033104, (2009).

DOI: https://doi.org/10.1103/physrevb.79.033101

[14] G. Li, X. Chen, O. Li, C. Shao, Y. Jiang, L. Huang, B. Ni, W. Hu, and W. Lu: A novel plasmonic resonance sensor based on an infrared perfect absorber, J. Phys. D: Appl. Phys., Vol. 45, p.205102, (2012).

DOI: https://doi.org/10.1088/0022-3727/45/20/205102

[15] A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen: Quantification of Multiple Molecular Fingerprints by Dual-Resonant Perfect Absorber, Advanced Optical Materials, Vo. 4, pp.1274-1280, (2016).

DOI: https://doi.org/10.1002/adom.201600305

[16] B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang: Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array, Optics Express, Vol. 19, no. 16, pp.15221-15228, (2011).

DOI: https://doi.org/10.1364/oe.19.015221

[17] E. Aslan, S. Kaya, E. Aslan, S. Korkmaz, O. G. Saracoglu and M. Turkmen: Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array, Sensors and Actuators B: Chemical , Vol. 243, pp.617-625, (2015).

DOI: https://doi.org/10.1016/j.snb.2016.12.030

[18] J. B. You, W. J. Lee, D. Won, and K. Yu: Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation, Optics Express, Vol. 22, no. 7, pp.8339-8348, (2014).

DOI: https://doi.org/10.1364/oe.22.008339

[19] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne: Biosensing with Plasmonic Nanosensors, Nature Materials, Vol. 7, no. 9, pp.442-453, (2008).

DOI: https://doi.org/10.1038/nmat2162

[20] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou and M. Qiu: High performance optical absorber based on a plasmonic metamaterial, Appl. Phys. Lett., Vol. 96, pp.251104-3, (2010).

DOI: https://doi.org/10.1063/1.3442904

[21] The numerical simulations are carried out using a finite-difference-time-domain package (Lumerical FDTD Solutions). [Online]. Available: www. lumerical. com.

[22] E.D. Palik: Handbook of Optical Constants of Solids, Academic, FL, (1985).