Piezoelectricity in the {AxA`(1-x)}BO3 and A{BxB`(1-x)}O3 Ceramic Alloys


Article Preview

ABO3 perovskite ceramics due to their chemical nature and size difference of the cations A (where A is a divalent metal) and B (where B is a tetravalent metal) have non-centro-symmetric polymorphs and display significant piezoelectric properties. One path to improve piezoelectric properties is through alloying these materials. In order to assess the feasibility of this, we have investigated the structure, elastic and piezoelectric properties of prototypical cubic and tetragonal phases of ABO3 bulk ceramic oxides and their alloys: {AxA`(1-x)}BO3 and A{BxB`(1-x)}O3 by density functional theory based first-principle calculations. Using 2x2x2 super cells as models in our calculations, we have covered the full alloying range by varying concentration, x, in steps of 12.5%. We have created models using Ba, Sr, Pb, for A and A`, and Ti, Zr for B and B` both in cubic and tetragonal super cells. Here, we will report the structural and piezoelectric properties of tetragonal phases of ABO3 bulk ceramic oxides and their alloys.



Edited by:

A.G. Mamalis, Masato Enokizono, Antonios Kladas, T. Sawada, Mustafa Güden and Prof. Mustafa M. Demir




B. Akgenc et al., "Piezoelectricity in the {AxA`(1-x)}BO3 and A{BxB`(1-x)}O3 Ceramic Alloys", Materials Science Forum, Vol. 915, pp. 34-38, 2018

Online since:

March 2018




* - Corresponding Author

[1] J. B. Haskins, A. Kinaci, T. Çağın, Molecular Dynamics Simulations of Piezoelectric Materials for Energy Harvesting Applications,, Materials Science Forum 792, 54-64 (2014).

DOI: 10.4028/www.scientific.net/msf.792.54

[2] J. Nye, Physical properties of crystals, Clarendon press, (1985).

[3] A.G. Ye, Handbook of Dielectric, Piezoelectric and Ferroelectric Materials,, Woodhead Publishing Limited, Cambridge, (2008).

[4] R. Guo, L. E. Cross, S-E. Park, B. Noheda, D.E Cox and G. Shirane, Phys. Rev. Lett. 84, 23 (2000).

[5] M. S. Majdoub, P. Sharma and T. Cagin, Phys. Rev B 78, 121407 (2008).

[6] S. R. Anton and H. Sodano, Smart. Mater. Struct. 16, R1- R21 (2007).

[7] A.Erba, Kh. E. El-Kelany, M. Ferrero, I.Baraille and M. Rerat , Phys. Rev. B 88, 035102 (2013).

DOI: 10.1103/physrevb.88.035102

[8] M. de Jong, W.Chen, H. Geerlings, M. Asta and K.A. Persson, Nature Sci. Data 2, 150053 (2015).

[9] K-A. N. Duerloo, M.T. Ong and E. Reed, J. Phys. Chem. Lett. 3, 2871-2876 (2012).

[10] M. M. Alyoruk, Y. Airken, D. Cakir, F. M. Peeters and C. Sevik, J. Phys. Chem. C 119, 23231-23237 (2015).

[11] R. Fei, W. Li, J. Li and L. Yang, Appl. Phys. Lett. 107, 173104 (2015).

[12] W. Li and J. Li, Nano Research 8(12): 3796-3802 (2015).

[13] J. Shi, I. Grinberg, X.Wang and A.M. Rappe, Phys. Rev. B 89, 094105 (2014).

[14] A. Mahmoud, A. Erba, Kh. E.El-Kelany, M. Rerat and R. Orlando, Phys. Rev. B 89, 045103, (2014).

[15] S. Kim, W-J Lee, Y-H Cho, M. Shim and S. Kim, Japanese J Appl. Phys. 52, 091101 (2013).

[16] G. Kresse, M. Marsman and J. Furtmuller, Vienna Ab-initio Simulation Package, Wien, Austria.

[17] B.Akgenc, A study of the relation of piezoelectric properties and nano structures through methods in computational physics, Ph. D. Thesis, Yildiz Technical University, (2016).

Fetching data from Crossref.
This may take some time to load.