Effect of Hubbard U on the Electronic Properties of Monolayer FeSe/SrTiO3(001) Superconductor


Article Preview

Recent studies identified some factors that contribute to the enhancement of Tc in monolayer FeSe/STO superconductor. It has been claimed that electron doping and electron-phonon coupling play a crucial role in high-Tc superconductivity. However, electron doping and electron-phonon mechanism alone cannot fully explain the high-Tc of monolayer FeSe/STO. In this study, we introduce another factor, the Hubbard U correction, and investigate its effect. The electronic structure calculations on single-layer FeSe grown on STO using density functional theory with Hubbard U (DFT+U) is presented. It is found that the Hubbard U suppresses the hole-like band at the Brillouin zone center leading to an electronic structure that resembles the experimental ARPES data. This suggests that electron correlation in monolayer FeSe/STO system plays a crucial role in the origin of high-Tc superconductivity.



Edited by:

Prof. Kazuo Umemura




N. J. P. Jacosalem and L. C. C. Ambolode II, "Effect of Hubbard U on the Electronic Properties of Monolayer FeSe/SrTiO3(001) Superconductor", Materials Science Forum, Vol. 916, pp. 38-42, 2018

Online since:

March 2018




* - Corresponding Author

[1] F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, and M.K. Wu, Proc. Natl Acad. Sci. USA 105, 14262-14264 (2008).

[2] S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630-633 (2009).

DOI: https://doi.org/10.1038/nmat2491

[3] D. Liu, W. Zhang, D. Mou, J. He, Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang, L. Zhao, S. He, Y. Peng, X. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, J. Hu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Nat. Commun. 3, 931 (2012).

DOI: https://doi.org/10.1038/ncomms1946

[4] S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, YB Ou, QY Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Nat. Mater. 12, 605-610 (2013).

DOI: https://doi.org/10.1038/nmat3648

[5] S. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D. Xu, Q. Fan, H. Xu, J. Jiang, T. Zhang, X. Lai, T. Xiang, J. Hu, B. Xie, and D. Feng, Nat. Mater. 12, 634-640 (2013).

DOI: https://doi.org/10.1038/nmat3654

[6] Q.Y. Wang, Z. Li, W.H. Zhang, Z.C. Zhang, J.S. Zhang, W. Li, H. Ding, Y.B. Ou, P. Deng, K. Chang, J. Wen, C.L. Song, K. He, J. F. Jia, S.H. Ji, Y.Y. Wang, L.L. Wang, X. Chen, X.C. Ma, and Q.K Xue, Chin. Phys. Lett. 29 037402 (2012).

DOI: https://doi.org/10.1088/0256-307x/29/3/037402

[7] Q. Wang, W. Zhang, Z. Zhang, Y. Sun, Y. Xing, Y. Wang, L. Wang, X. Ma, Q. K. Xue, J. Wang. 2D Mater. 2 044012 (2015).

[8] J. Bang, Z. Li, Y.Y. Sun, A. Samanta, Y.Y. Zhang, W. Zhang, L. Wang, X. Chen, X. Ma, Q. K. Xue, S. B. Zhang, Phys. Rev. B 87 220503 (2013).

[9] J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y. T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D. H. Lee, and Z. X. Shen, Nature 515, 245-248 (2014).

[10] T. Bazhirov and M. L. Cohen, J. Phys.: Condens. Matter. 25 105506 (2013).

[11] S. Coh, M. L. Cohen, and S. G. Louie, New Journal of Physics 17 073027 (2015).

[12] L. P. Gor'kov, Phys. Rev. B 93 060507 (2016).

[13] C. Zhang, Z. Liu, Z. Chen, Y. Xie, R. He, S. Tang, J. He, W. Li, T. Jia, S. N. Rebec, E. Y. Ma, H. Yan, M. Hashimoto, D. Lu, S. K. Mo, Y. Hikita, R. G. Moore, H. Y. Hwang, D. Lee and Z. Shen, Nat. Commun. 8 14468 (2017).

DOI: https://doi.org/10.1038/ncomms14468

[14] C. J. Tang, D. Zhang, Y. Y. Zang, C. Liu, G. Y. Zhou, Z. Li, C. Zheng, X. P. Hu, C. L. Song, S. H. Ji, K. He, X. Chen, L. L. Wang, X. C. Ma, and Q. K. Xue, Phys. Rev. B 92 180507 (2015).

[15] Y. Xie, H. Y. Cao, Y. Zhou, S. Chen, H. Xiang, and X. G. Gong, Sci. Rep. 5 10011 (2015).

[16] B. Li, Z. W. Xing, G. Q. Huang, D. Y. Xing, Journal of Applied Physics 115 193907 (2014).

[17] Hubbard, J. Proc. R. Soc. A 276, 237–257 (1963).

[18] Hubbard, J. Proc. R. Soc. A 281, 401–419 (1964).

[19] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, Journal of Physics: Condensed Matter 21 395502 (2009).

DOI: https://doi.org/10.1088/0953-8984/21/39/395502

[20] A. Tamai, A. Y. Ganin, E. Rozbicki, J. Bacsa, W. Meevasana, P. D. C. King, M. Caffio, R. Schaub, S. Margadonna, K. Prassides, M. J. Rosseinsky, and F. Baumberger, Phys. Rev. Lett. 104 097002 (2010).

DOI: https://doi.org/10.1103/physrevlett.104.097002

[21] K. Liu, Z. Y. Lu, and T. Xiang, Phys. Rev. B 85 235123 (2012).

[22] A. Linscheid, Supercond. Sci. Technol. 29 104005 (2016).

Fetching data from Crossref.
This may take some time to load.