Effect of Acid-Doped Polyaniline-Zinc Oxide Composite on the Removal of Methyl Orange under Visible Light Exposure


Article Preview

In this study, acid-doped polyaniline-zinc oxide composites were prepared and used to investigate their effect on the removal of methyl orange dye under visible light exposure. The composites were prepared by mixing different volume fractions of polyaniline and ZnO powders. Their effect on the removal of methyl orange was determined through transmittance spectroscopy. Polyaniline-zinc oxide composites of 75% volume fractions showed the highest percent removal of methyl orange. This was attributed to the presence of p-n heterojunctions and adsorption capability of the polyaniline molecules.



Edited by:

Prof. Ramesh K. Agarwal




A. M. J. Leonor et al., "Effect of Acid-Doped Polyaniline-Zinc Oxide Composite on the Removal of Methyl Orange under Visible Light Exposure", Materials Science Forum, Vol. 917, pp. 17-21, 2018

Online since:

March 2018




* - Corresponding Author

[1] Akyol, H.C. Yatmaz and M. Bayramoglu, Applied Catalysis B: Environmental 54 (2004) p.19–24.

[2] A. Akyol and M. Bayramoglu Journal of Hazardous Materials B124 (2005) p.241–246.

[3] N. Daneshvar, D. Salari and A.R. Khataee, Journal of Photochemistry and Photobiology A: Chemistry 162 (2004) p.317–322.

[4] L. Gao, J. Du and T. Ma, Ceramics International 43 (2017) p.9559–9563.

[5] L. Gu, J. Wang, R. Qi, X. Wang, P. Xu and X. Han, Journal of Molecular Catalysis A: Chemical 357 (2012) p.19– 25.

[6] H. Liu, T. Lv, C. Zhu and Z. Zhu, Solar Energy Materials & Solar Cells 153 (2016) p.1–8.

[7] M. Nam, S. Kim, M. Kang, S. -W Kim, and K. -K Lee, Organic Electronics 13 (2012) p.1546–1552.

[8] S.M. Shah, A. Kira, H. Imahori, D. Ferry, H. Brisset, F. Fages and J. Ackermann, Journal of Colloid and Interface Science 386 (2012) p.268–276.

DOI: https://doi.org/10.1016/j.jcis.2012.06.037

[9] Q. Li, C. Zhang and J. Li, Applied Surface Science 257 (2010) p.944–948.

[10] D.L.V. Almanza, M.C.T. Garcia, A.D. Prodigalidad and M.U. Herrera, Key Engineering Materials 705 (2016) pp.385-389.

[11] A.B. Gorospe and M.U. Herrera, Journal of Physics: Conf. Series 817 (2017) 012058.

[12] M. Cabuk, and B. Gunduz, Colloids and Surfaces A 532 (2017) pp.263-269.

[13] K. Krukiewicz and A. Katunin, Synthetic Metals 214 (2016) p.45–49.

[14] G. Ebrahimi, J. Neshati and F. Rezaei, Progress in Organic Coatings 105 (2017) p.1–8.

[15] C. Della Pinaa, E. Zappa, G. Busca, A. Sironi and E. Falletta, Sensors and Actuators A 252 (2016) p.59–66.

DOI: https://doi.org/10.1016/j.sna.2016.11.008

[16] M. Sajimol Augustine, P.P. Jeeju, S.J. Varma, P.A. Francis Xavier and S. Jayalekshmi, Thin Solid Films 562 (2014) p.84–89.

DOI: https://doi.org/10.1016/j.tsf.2014.03.083

[17] R. Pandimurugan and S. Thambidurai, Journal of Environmental Chemical Engineering 4 (2016) p.1332–1347.

[18] M. Laabd, H. Ait Ahsaine, A. El Jaouhari, B. Bakiz, M. Bazzaoui, M. Ezahri, A. Albourine, and A. Benlhachemi, Journal of Environmental Chemical Engineering 4 (2016) p.3096–3105.

DOI: https://doi.org/10.1016/j.jece.2016.06.024

[19] V. Sharma, P. Rekha, and P. Mohanty, Journal of Molecular Liquids 222 (2016) p.1091–1100.

[20] R. Li, L. Liu and F. Yang, Journal of Hazardous Materials 280 (2014) p.20–30.

[21] M.S. Mansour, M.E. Ossman, and H.A. Farag, Desalination 272 (2011) p.301–305.

[22] B. Qiu, C. Xu, D. Sun, Q. Wang, H. Gu, X. Zhang, B. L. Weeks, J. Hopper, T. C. Ho, Z. Guo and S. Wei, Applied Surface Science 334 (2015) p.7–14.