Heat Treated Luffa - PLA Composites: Effect of Cyclic Moisture Absorption and Desorption on the Mechanical Properties


Article Preview

The goal of this study was to investigate the influence of cyclic hot and cold water absorption and desorption on the flexural and impact strengths of luffa – PLA biocomposites. PLA was reinforced with heat treated luffa fibers with the fiber loadings: 5 vol.%, 10 vol.%, 15 vol.% and 20 vol.%. Based on the test results the biocomposite with the highest flexural and impact strengths was selected for water absorption and desorption cycles. The biocomposites were subjected to 56 cycles of hot and cold water absorption and desorption. The biocomposites were tested for their strengths after every 14 cycles. The absorption and desorption decreased the flexural and impact strengths, affecting the impact strength more than the flexural strength.



Edited by:

Prof. Ramesh K. Agarwal




A. Kakar et al., "Heat Treated Luffa - PLA Composites: Effect of Cyclic Moisture Absorption and Desorption on the Mechanical Properties", Materials Science Forum, Vol. 917, pp. 42-46, 2018

Online since:

March 2018




* - Corresponding Author

[1] R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci. 4 (2004) 835-864.

DOI: https://doi.org/10.1002/mabi.200400043

[2] O. Faruk, A.K. Bledzki, H. -P. Fink, M. Sain, Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 299 (2014) 9-26.

DOI: https://doi.org/10.1002/mame.201300008

[3] I. Manavitehrani, A. Fathi, H. Badr, S. Daly, A.N. Shirazi, F. Dehghani, Biomedical applications of biodegradable polyesters, Polym. 8 (2016) 1-32.

DOI: https://doi.org/10.3390/polym8010020

[4] Y. Zuo, J. Gu, J. Cao, S. Wei, H. Tan, Y. Zhang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 (2015) 1108–1114.

[5] O. Faruk, A.K. Bledzki, H. -P Fink, M. Sain. Biocomposites reinforced with natural fibers: 2000-2010, Prog. Polym. Sci. 37 (2012) 1552-1596.

DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003

[6] K.G. Satyanarayana, J. L Guimaraes, F. Wypych, Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications, Compos. Part A Appl. Sci. Manuf. 38 (2007) 1694-1709.

DOI: https://doi.org/10.1016/j.compositesa.2007.02.006

[7] W. Sujaritjun, P. Uawongsuwan, W. Pivsa-Art, H. Hamada, Mechanical property of surface modified natural fiber reinforced PLA biocomposites, Energy Procedia 34 (2013) 664–672.

DOI: https://doi.org/10.1016/j.egypro.2013.06.798

[8] M. Deroine, A. Le Duigou, Y.M. Corre, P. -Y. Le Gac, P. Davies, G. César S. Bruzaud, Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polym. Degrad. Stab. 108 (2014) 319–329.

DOI: https://doi.org/10.1016/j.polymdegradstab.2014.01.020

[9] M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Poly‐Lactic Acid: production, applications, nanocomposites, and release studies, Compr. Rev. Food Sci. Food Saf. 9 (2010) 552–571.

DOI: https://doi.org/10.1111/j.1541-4337.2010.00126.x

[10] ASTM D790-15. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. In: ASTM International. West Conshohocken, PA, (2015) p.1–12.

DOI: https://doi.org/10.1520/d0790-07

[11] ASTM D4812-11. Standard Test Method for Unnotched Cantilever Beam Impact Resistance of Plastics. In: ASTM International. West Conshohocken, PA, (2011) p.1–12.

[12] N.A. Ibrahim, W.M.Z.W. Yunus, M. Othman, K. Abdan, K.A. Hadithon, Poly(Lactic Acid) (PLA)-Reinforced Kenaf Bast Fiber Composites: The Effect Of Triacetin, J. Reinf. Plas. Compos. 29 (7) (2010) 1099-1111.

DOI: https://doi.org/10.1177/0731684409344651

[13] V.P. Sajna, S.K. Nayak, S. Mohanty, Weathering and biodegradation study on graft copolymer compatibilized hybrid bionanocomposites of poly(lactic acid), J. Mater. Eng. Perform. 25 (2016) 2895–2906.

DOI: https://doi.org/10.1007/s11665-016-2151-z

[14] E. Osman, a. Vakhquelt, I. Sbarski, S. Mutasher, Water absorption behavior and its effect on the mechanical properties of kenaf natural fiber unsaturated polyester composites, 18th Int. Conf. Compos. Mater. 1 (2011) 1-6.

DOI: https://doi.org/10.4028/www.scientific.net/amr.311-313.260

[15] T. Tábi, P. Tamás, J.G. Kovács, Chopped basalt fibres: a new perspective in reinforcing poly (lactic acid) to produce injection moulded engineering composites from renewable and natural resources, Express. Polym. Lett. 7 (2013) 107–119.

DOI: https://doi.org/10.3144/expresspolymlett.2013.11

[16] J. Gassan, A.K. Bledzi, Effect of cyclic moisture absorption desorption on the mechanical properties of silanized jute-epoxy composites, Polym. Compos. 20 (1999) 604-611.

DOI: https://doi.org/10.1002/pc.10383

[17] T. Alomayri, H. Assaedi, F. Shaikh, I.M. Low, Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites, J. Asia. Ceram. Soci.

Fetching data from Crossref.
This may take some time to load.