Oxidation Resistance and Bending Strength at High Temperatures of Ni/(ZrO2+Al2O3) Hybrid Materials

Abstract:

Article Preview

Oxidation resistance and bending strength at high temperatures of 5 vol% Ni/(10 vol% ZrO2+Al2O3) were investigated in this paper. Oxidation tests were conducted at temperature ranging from 1100 to 1300oC for 1 to 24 h in air. The oxidation resistance of the composites was studied via observation of oxidized-zone development from a cross-section view after oxidation. Three-point bending tests were conducted at temperatures ranging from room temperature to 1200oC in order to estimate its performance at high temperatures. Bending strength of the composites achieved 1200 MPa at room temperature and 460 MPa at 1200oC. Dispersion of ZrO2 in Ni/Al2O3 composites enhanced both their room and high temperature bending strength. Nevertheless, ZrO2 slightly degraded the oxidation resistance of the composites. The oxidation rate of Ni/(ZrO2+Al2O3) was one order of magnitude higher than that of Ni/Al2O3.

Info:

Periodical:

Edited by:

Junichi Hojo, Tohru Sekino, Jian Feng Yang, Hyung Sun Kim and Wen Bin Cao

Pages:

104-109

Citation:

H. V. Pham et al., "Oxidation Resistance and Bending Strength at High Temperatures of Ni/(ZrO2+Al2O3) Hybrid Materials", Materials Science Forum, Vol. 922, pp. 104-109, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] T. Sekino, T. Nakajima, T. Ueda and K. Niihara, J. Am. Ceram. Soc. 80 (1997) 1139-1148.

[2] O. Abe, Y. Ohwa and Y. Kuranobu, J. Euro. Ceram. Soc. 26 (2005) 689-695.

[3] W. P. Tai and T. Watanabe, J. Mater. Sci. 33 (1998) 5795-5801.

[4] K. Niihara, J. Am. Ceram. Soc. 74 (1991) 1142-1144.

[5] A.L. Salas-Villasenor, J. Lemus-Ruiz, M. Nanko and D. Maruoka, Adv. Mater. Res. 68 (2009) 34-43.

[6] D. Maruoka and M. Nanko, Ceramics International 39 (2013) 3221-3229.

[7] H.V. Pham and M. Nanko, J. Ceram. Process. Res. 16 (2015) 468-471.

[8] M. Nanko, M. Mizumo, M. Watanabe, K. Matsumaru and K. Ishizaki, Advance in Technology of Materials and Materials Processing Journal 6 (2004) 240-243.

[9] D. Maruoka and M. Nanko, Mate. Trans. 51 (2010) 1570-1573.

[10] H.V. Pham, D. Maruoka and M. Nanko, J. Asia. Ceram. Soc. 4 (2016) 120-123.

[11] H.V. Pham, M. Nanko and W. Nakao, Int. J. Appl. Ceram. Tec. 13 (2016) 973-983.

[12] R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature 258 (1975) 703-704.

[13] P. M. Kelly and L. R. Francis Rose, Progress in Materials Science 47 (2002) 463-557.

[14] H.V. Pham and M. Nanko, Mater. Sci. Forum, 804 (2015) 179-182.

[15] C. Pascual, J. R. Jurado and P. Duran, J. Mater. Sci. 18 (1983) 1315-1322.

[16] A. Eichler, Physical Review B 64 (2001) 174103.

[17] A. G. Evans, W. Blumenthal, High temperature failure mechanisms in ceramic polycrystals, in: R. E. Tressler, R. C. Bradt (Eds.), Deformation of Ceramic Materials II, Plenum Press, New York, 1984, pp.487-505.

DOI: https://doi.org/10.1007/978-1-4615-6802-5_33