Effect of Solvents on Cadmium-Doped Zinc Oxide Nanoparticles Synthesised by Sol-Gel Technique


Article Preview

In this study, a comparative investigation of the effect of two solvents on cadmium-doped zincoxide (Cd-ZnO) nanoparticles synthesized via the sol-gel method is presented and discussed. Zinc acetate was used as the precursor with ethanol and methanol as solvents, and cadmium nitrate tetrahydrate was used as the cadmium dopant source. The properties of the synthesized ZnO nanoparticles were examined by XRD, SEM, TEM,TG-DTA and UV-vis spectroscopy (UV-vis). It was found that the crystallite sizes of the ZnO nanoparticles ranged from 35 to 50nm and had spherical shapes, and that the particle size decreased with Cd doping. Consequently, absorbance spectra showed that the Cd-doped ZnO nanoparticles extended the light absorption properties of the material into the visible region. Furthermore, the ZnO nanoparticles synthesized with ethanol had a relatively smaller sizethan methanol which resulted in higher absorbance of ZnO synthesized with ethanol than methanol.



Edited by:

Junichi Hojo, Tohru Sekino, Jian Feng Yang, Hyung Sun Kim and Wen Bin Cao




H. Nalumaga et al., "Effect of Solvents on Cadmium-Doped Zinc Oxide Nanoparticles Synthesised by Sol-Gel Technique", Materials Science Forum, Vol. 922, pp. 14-19, 2018

Online since:

May 2018




* - Corresponding Author

[1] A. Janotti, C.G. Van de Walle, Reports on Progress in Physics, 72 (2009) 126501.

[2] V. Coleman, C. Jagadish, in: S.P.E. C. Jagadish, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, Elservier Science Ltd, Oxford, 2006, pp.1-20.

DOI: https://doi.org/10.1016/b978-008044722-3/50001-4

[3] O. Oprea, E. Andronescu, D. Ficai, A. Ficai, F. N Oktar, M. Yetmez, Current Organic Chem., 18 (2014) 192-203.

DOI: https://doi.org/10.2174/13852728113176660143

[4] J. Halder, N. Islam, J. Envir. and Human, 2 (2015) 36-46.

[5] F. Owa, Mediterr. J. Soc. Sci., 4 (2013) 65-68.

[6] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res., 88 (2016) 428-448.

[7] M. Zhao, J. Zhang, Global Environ. Policy Jpn., 12 (2008) 1-9.

[8] A. Kołodziejczak-Radzimska, T. Jesionowski, Materials, 7 (2014) 2833-2881.

[9] P.B. Khoza, M.J. Moloto, L.M. Sikhwivhilu, J. Nano., 2012 (2012) 6.

[10] K.L. Foo, M. Kashif, U. Hashim, W.-W. Liu, Cera. Inter., 40 (2014) 753-761.

[11] R. Rahimi, J. Shokrayian, M. Rabbani, 17th Inter. Elec. Confer.on Synthetic Organic Chemistry, Multidisciplinary Digital Publishing Institute, 2013, pp. b019.

[12] A.B. Lavand, Y.S. Malghe, J. Asian Ceramic Societies, 3 (2015) 305-310.

[13] Y. Zhai, J. Li, X. Fang, X. Chen, F. Fang, X. Chu, Z. Wei, X. Wang, Materials Science in Semiconductor Processing, 26 (2014) 225-230.

[14] C. Rezende, J. Da Silva, N. Mohallem, Brazilian Journal of Physics, 39 (2009) 248-251.

[15] A.K. Zak, M.E. Abrishami, W.A. Majid, R. Yousefi, S. Hosseini, Ceram. Inter., 37 (2011) 393-398.

[16] P.C. Yao, S.T. Hang, Y.S. Lin, W.T. Yen, Y.C. Lin, App. Sur. Sci., 257 (2010) 1441-1448.

[17] M. Soosen Samuel, L. Bose, K. George, Academic Review, (2009) 57-65.

[18] W.E. Mahmoud, A.Al-Ghamdi, F. El-Tantawy, S. Al-Heniti, J. Alloys & Compounds, 485 (2009) 59-63.

[19] H. Sarma, K. Sarma, Int. J. Sci. Res. Pub., 4 (2014) 1-7.

[20] J. I. Song, J. H. Zheng, Z. Zhen, B. Y. Zhou, J. S. Lian, Trans. of Nonfer. Met. Soc. of China, 23 (2013) 2336-2340.

[21] A.K. Zak, R. Razali, W. Majid, M. Darroudi, Int. J. Nanomedi., (2011) 1399-1403.

Fetching data from Crossref.
This may take some time to load.