Surface Functionalization of Zirconia Nanocrystals with Silane Coupling Agent and its Dispersion Behavior in O-Phenylphenoxyethyl Acrylate

Abstract:

Article Preview

Highly crystalline and dispersible zirconia, synthesized by solvothermal reaction of zirconium (IV) isopropoxide isopropanol complex in benzyl alcohol, were functionalized with silane coupling agent and dispersed with o-phenylphenoxyethyl acrylate (OPPEA). Silane coupling agents such as 3-aminopropyltriethoxysilane (APTES) of amino functional silane, decyltrimethoxysilane (DTMS) of alkyl functional silane and 3-(trimethoxysilyl) propyl methacrylate (MPS) of acrylate functional silane have been used to modify nanoparticle surfaces and obtain dispersion of nanoparticles within OPPEA. The surface modified zirconia was compared according to silane coupling agent, FT-IR and TGA demonstrated that APTES, DMTS and MPS are chemically attached to the surface of the zirconia. The MPS-zirconia is dispersed as about 5 nm sized, whereas the APTES-zirconia, DTMS-zirconia are agglomerated. The MPS-zirconia/tetrahydrofuran (THF) sol at 15wt% loading shows high transmittance of 68 % at 550 cm-1 and the 50wt% surface modified-zirconia/OPPEA sol show refractive index of 1.657.

Info:

Periodical:

Edited by:

Junichi Hojo, Tohru Sekino, Jian Feng Yang, Hyung Sun Kim and Wen Bin Cao

Pages:

20-25

Citation:

H. S. Lee et al., "Surface Functionalization of Zirconia Nanocrystals with Silane Coupling Agent and its Dispersion Behavior in O-Phenylphenoxyethyl Acrylate", Materials Science Forum, Vol. 922, pp. 20-25, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] A. C. Balazs, T.Emrick, T. P. Russell, Nanoparticle polymer composites: where two small worlds meet, Science 314 (2006)1107-1110.

DOI: https://doi.org/10.1126/science.1130557

[2] M.Sangermano, A. Priola, G. Kortaberria, A. Jimeno, I. Garcia, I. Mondragon, G. Rizza,Photopolymerization of epoxy coatings conaining iron-oxide nanoparticles,Macromol.Mater.Eng. 292(2007) 956-961.

DOI: https://doi.org/10.1002/mame.200700093

[3] A. Okada, A. Usuki, Twenty years of polymer-clay nanocomposites,Macromol.Mater. Eng. 291 (2006)1449-1476.

DOI: https://doi.org/10.1002/mame.200600260

[4] P. Tao, Y. Li, A. Rungra, A. Viswanath, J. Gao, B. C. Benicewica, R. W. Seigel, L. S. Schadler, TiO2 nanocomposites with high refractive index and transparency, J. Mater. Chem. 21 (2011) 18623-18629.

DOI: https://doi.org/10.1039/c1jm13093e

[5] N. S. Allen, M. Edge, A. Ortega, G. Sandoval, CM. Liauw, J Verran, J. Stratton, RB. McIntryre, Degradation and stabilisation of polymers and coatings: nano versus pigmentary titania particles, Polym.Degrad. Stab. 85 (2004) 85-927.

DOI: https://doi.org/10.1016/j.polymdegradstab.2003.09.024

[6] S. Zhou, G.Garnweitner, M. Niederberger, M. Antonietti, Dispersion Behavior of Zirconia Nanocrystals and their surface Functionalization with Vinyl-Containing Ligands, Langmuir 23 (2007) 9178-9187.

DOI: https://doi.org/10.1021/la700837u

[7] K. Luo, S. Zhou, L. Wu, G. Gu, Dispersion and Functionalization of Nonaqueous Synthesized Zirconia Nanocrystals via Attachment of Silane Coupling Agents, Langmuir 24 (2008) 11497-11505.

DOI: https://doi.org/10.1021/la801943n

[8] T. Xu, C. S. Xie, Tetapod-like nano-particle ZnO/acrylic resin composite and its multi-function property, Prog. Org. Coat.46 (2003) 46-297.

DOI: https://doi.org/10.1016/s0300-9440(03)00016-x

[9] N. Nakayama, T. Hayashi, Preparation and characterization of TiO2-ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerizarion, Composites. Part A.38 (2007) 1996-(2001).

DOI: https://doi.org/10.1016/j.compositesa.2007.05.005

[10] K. Luo, S. Zhou, L. Wu, B. You, Preparation and properties of cross-linked zirconia nanoparticle films on polycarbonate, Thin Solid Films 518 (2010) 6804-6810.

DOI: https://doi.org/10.1016/j.tsf.2010.06.035

[11] G. G. Garnweitner,L. M. Goldenberg, O. V. Sakhno, M. Antonietti, M. iederberger, J. Strumpe, Large-Scale Synthesis of Organophilic Zirconia Nanoparticles and theirApplication in Organic-Inorganic Nanocomposites for Efficient Volume Hoography,small 3 (2007).

DOI: https://doi.org/10.1002/smll.200700075

[12] G. Garnweitner, M. Niederberger, Nonaqueous and Surfactant-Free Synthesis Routes to metal Oxide Nanoparticles, J. Am. Ceram. Soc. 89 (2006) 1801-1808.

DOI: https://doi.org/10.1111/j.1551-2916.2006.01005.x

[13] K. Xu, S. Zhou, L. Wu, Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings, J Mater Sci 44 (2009) 1613-1621.

DOI: https://doi.org/10.1007/s10853-008-3231-8

[14] P. Innocenzi, G. Brusatin, M Guglielmi, R. Bertani, New Synthetic Route to (3-Glycidoxypropyl)trimethoxysilane-Based Hybrid Organic-Inorganic Materials, Chem. Mater. 11 (1999) 1672-1679.

DOI: https://doi.org/10.1021/cm980734z

[15] P. Innocenzi, G. Brusatin, Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials, Chem. Mater. 12 (2000) 3726-3732.

DOI: https://doi.org/10.1021/cm001139b

[16] J. Blitz, R. Murthy, D. Leyden, Ammonia-catalyzed silylation reactions of Cab-O-Sil with methoxymethylsilanes, J. Am. Chem. Soc. 109 (1987) 7141-7145.

DOI: https://doi.org/10.1021/ja00257a039

[17] Q. Liu, J. Ding, D. E. Chambers, S. Debnath, S. L. Wnder, G. R. Baran, Filler-coupling agent-matrix interactions in silica/polymethymethacrylate composites,J. Biomed. Mater. Res.57 (2001) 384-393.

DOI: https://doi.org/10.1002/1097-4636(20011205)57:3<384::aid-jbm1181>3.0.co;2-f

Fetching data from Crossref.
This may take some time to load.