Upconversion Luminescence of ZnO-TiO2: Ho3+/Yb3+ Phosphor Powder

Abstract:

Article Preview

Ho3+/Yb3+ co-doped ZnO-TiO2 composite system were synthesized by powder-solution mixing method and their upconversion (UC) luminescence characteristics were investigated under the 980 nm laser excitation. The effect of various ZnO/TiO2 mixing ratios, and Ho3+ and Yb3+ concentrations were also studied. The XRD patterns showed that the product fired at 1300 °C consisted of Zn2TiO4, TiO2, RE2Ti2O7, and RE2TiO5 (RE = Ho3+ and/or Yb3+) phases. The green emission centered at 538 nm wavelength was detected as the strongest emission intensity which it was in accordance with the 5F4, 5S2 5I8 transition of Ho3+ ion. The emission intensity of the product changed by varying ZnO/TiO2 mixing ratios, and Ho3+ and Yb3+ concentrations. Brightest UC emission was observed in the sample of 1ZnO:1TiO2 (in mole) doped with 0.03 mol% Ho3+, 9 mol% Yb3+ fired at 1300 °C for 1 h. Besides, the dependence of the UC emission intensity on the excitation power indicated that the two-photon process was responsible for this UC system.

Info:

Periodical:

Edited by:

Junichi Hojo, Tohru Sekino, Jian Feng Yang, Hyung Sun Kim and Wen Bin Cao

Pages:

32-39

Citation:

K. Kobwittaya et al., "Upconversion Luminescence of ZnO-TiO2: Ho3+/Yb3+ Phosphor Powder", Materials Science Forum, Vol. 922, pp. 32-39, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] L. Wang, M. Lan, Z. Liu, G. Qin, C. Wu, X. Wang, W. Qin, W. Huang, L. Huang, Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in β-NaLuF4 microcrystals under 980 nm excitation, J. Mater. Chem. C 1 (2013).

DOI: https://doi.org/10.1039/c3tc00936j

[2] K. Yamamoto, M. Fujii, S. Sowa, K. Imakita, K. Aoki, Upconversion Luminescence of Rare-Earth-Doped Y2O3 Nanoparticle with Metal Nano-Cap, J. Phys. Chem. C 119 (2015) 1175-1179.

DOI: https://doi.org/10.1021/jp508443g

[3] F. Auzel, Upconversion and Anti-Stokes Processes with f and d Ions in Solids, Chem. Rev. 104 (2004) 139-174.

[4] H.X. Yang, H. Lin, L. Lin, Y.Y. Zhang, B. Zhai, E.Y.B. Pun, Powerful visible upconversion fluorescence of Er3+ in novel bismuth gallate glasses compared with in common tellurite glasses, J. Alloy. Compd. 453 (2008) 493-498.

DOI: https://doi.org/10.1016/j.jallcom.2006.11.172

[5] H. Lin, G. Meredith, S. Jiang, X. Peng, T. Luo, N. Peyghambarian, E.Y.B. Pun, Optical transitions and visible upconversion in Er3+ doped niobic tellurite glass, J. Appl. Phys. 93 (2003) 186-191.

DOI: https://doi.org/10.1063/1.1527209

[6] X. Wang, S. Xiao, Y. Bu, J.W. Ding, Upconversion properties of Nd3+-Yb3+-Ho3+-doped β-Na(Y1.5Na0.5)F6 powders, J. Alloy. Compd. 477 (2009) 941-945.

DOI: https://doi.org/10.1016/j.jallcom.2008.11.012

[7] F. Weng, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev. 38 (2009) 976-989.

[8] H. Huang, H. Zhou, J. Zhou, T. Wang, D. Huang, Y. Wu, L. Sun, G. Zhou, J. Zhan, J. Hu, Enhanced anti-stocks luminescence in LaNbO4:Ln3+ (Ln3+ = Yb3+, Er3+/Ho3+/Tm3+) with abundant color, RSC Adv. 7 (2017) 16777-16786.

DOI: https://doi.org/10.1039/c6ra28592a

[9] L. Li, Y. Fan, D. Wang, G. Feng, D. Xu, Refractive index dispersion of spinel Zn2TiO4 single crystal, Cryst. Res. Technol. 46 (2011) 475-479.

DOI: https://doi.org/10.1002/crat.201100068

[10] L. Li, F. Li, T. Cui, Q. Zhou, D. Xu, Optical interband transitions in Zn2TiO4 single crystals, Phys. Status Solidi A 209 (2012) 2596-2599.

DOI: https://doi.org/10.1002/pssa.201228394

[11] H.N. Luitel, K. Ikeue, R. Okuda, R. Chand, T. Torikai, M. Yada, T. Watari, Bright orange upconversion in a ZnO-TiO2 composite containing Er3+ and Yb3+, Opt. Mater. 36 (2014) 591-595.

DOI: https://doi.org/10.1016/j.optmat.2013.10.027

[12] S.-I. Yamamoto, K. Ohyama, T. Nonaka, T. Kanamori, Characteristics of upconversion phosphor prepared using the MOD method, 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) (2014) 271-272.

DOI: https://doi.org/10.1109/am-fpd.2014.6867193

[13] K. Ohyama, T. Nonaka, T. Kanamori, S.-I. Yamamoto, Strong light of red up-conversion in a ZnO-TiO2 composite containing Er3+ and Yb3+, 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) (2015) 89-90.

DOI: https://doi.org/10.1109/am-fpd.2015.7173204

[14] T. Nonaka, T. Kanamori, K. Ohyama, S.-I. Yamamoto, Characteristics of upconversion phosphor prepared by metal-organic decomposition method, Jpn. J. Appl. Phys. 54 (2015) 03CA02.

DOI: https://doi.org/10.7567/jjap.54.03ca02

[15] W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook Second Edition, CRC Press, Boca Raton, Florida, (1995).

[16] T.J. Bruno, P.D.N. Svoronos, CRC Handbook of Fundamental Spectroscopic Correlation Charts, CRC Press, Boca Raton, Florida, (2005).

DOI: https://doi.org/10.1201/9781420037685

[17] X. Li, J. Zhu, Z. Man, Y. Ao, H. Chen, Investigation on the structure and upconversion fluorescence of Yb3+/Ho3+ co-doped fluorapatite crystals for potential biomedical applications, Sci. Rep. 4 (2014) 4446.

DOI: https://doi.org/10.1038/srep04446

[18] K. Kumar, A. Kumar, S.P. Tiwari, A.K. Singh, Synthesis of Gd2O3:Ho3+/Yb3+ upconversion nanoparticles for latent fingermark detection on difficult surfaces, Appl. Phys. B 122 (2016) 190.

DOI: https://doi.org/10.1007/s00340-016-6468-y

[19] E.M. Levin, C.R. Robbins, H.F. McMurdie, Phase Diagram for Chemists Volume I (Figures 1-2066), The American Ceramic Society, Inc., Columbus, Ohio, (1964).

[20] Y. Xu, M. Yamazaki, P. Villars, Inorganic Materials Database for Exploring the Nature of Material, Jpn. J. Appl. Phys. 50 (2011) 11RH02.

DOI: https://doi.org/10.7567/jjap.50.11rh02

[21] A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, G. Ceder, Formation enthalpies by mixing GGA and GGA + U calculations, Phys. Rev. B 84 (2011) 045115.

DOI: https://doi.org/10.1103/physrevb.84.045115

[22] H.T. Kim, Y. Kim, M. Valant, D. Suvorov, Titanium Incorporation in Zn2TiO4 Spinel Ceramics, J. Am. Ceram. Soc. 84 (2001) 1081-1086.

[23] C. Altavilla, Upconverting Nanomaterials: Perspectives, Synthesis, and Applications, CRC Press, Boca Raton, Florida, (2016).

[24] E. De la Rosa, P. Salas, H. Desirena, C. Angeles, R.A. Rodríguez, Strong green upconversion emission in ZrO2:Yb3+-Ho3+ nanocrystals, Appl. Phys. Lett. 87 (2005) 241912.

DOI: https://doi.org/10.1063/1.2143131

[25] M. Pollnau, D.R. Gamelin, S.R. Lüthi, H. U. Güdel, M.P. Hehlen, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B 61 (2000) 3337-3346.

DOI: https://doi.org/10.1103/physrevb.61.3337

[26] L. Liu, H. Jiang, Y. Chen, X. Zhang, Z. Zhang, Y. Wang, Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart, J. Lumin. 143 (2013) 423-431.

DOI: https://doi.org/10.1016/j.jlumin.2013.05.036

[27] X. Yu, S. Liang, Z. Sun, Y. Duan, Y. Qin, L. Duan, H. Xia, P. Zhao, D. Li, Microstructure and upconversion luminescence in Ho3+ and Yb3+ co-doped ZnO naocrystalline powders, Opt. Commum. 313 (2014) 90-93.

DOI: https://doi.org/10.1016/j.optcom.2013.09.071

[28] J. Xie, L. Mei, L. Liao, M. Guan, H. Liu, Synthesis and up-conversion luminescence properties of Ho3+, Yb3+ co-doped BaLa2ZnO5, J. Phys. Chem. Solids 83 (2015) 152-156.

DOI: https://doi.org/10.1016/j.jpcs.2015.04.006

[29] B. Xu, P. Wang, X. Meng, K. Zou, J. Liu, Effects of the Ho3+/Yb3+ concentration ratio on the structure and photoluminescence of ZnO films, J. Lumin. 175 (2016) 78-81.

DOI: https://doi.org/10.1016/j.jlumin.2016.02.014