Effect of AlF3 Content on Microstructure and Properties of Mullite/Al2O3 Composite Ceramics


Article Preview

To reinforce the mullite/Al2O3 composite ceramics through formation of mullite whiskers, the composite ceramics were prepared by pressureless sintering using different AlF3 content. The microstructure, porosity, fracture toughness and thermal shock resistance of the composite ceramics were investigated. The results show that the addition of AlF3 can promote the mullite whisker formations, and the whiskers with the size of 3~10μm in diameter and a length-diameter ratio of 10~15 are obtained by sintering at 1600°C with the AlF3 content of 5wt%. Fracture toughness and thermal shock resistance of the composite ceramics are improved by the formation of mullite whisker. The fracture toughness of 4.79MPa•m1/2 can be obtained, and the 95.18% flexural strength remained after thermal shock.



Edited by:

Junichi Hojo, Tohru Sekino, Jian Feng Yang, Hyung Sun Kim and Wen Bin Cao




K. Z. Sang et al., "Effect of AlF3 Content on Microstructure and Properties of Mullite/Al2O3 Composite Ceramics", Materials Science Forum, Vol. 922, pp. 62-67, 2018

Online since:

May 2018




* - Corresponding Author

[1] N. Song, H.B. Zhang, H. Liu, J.Z. Fang, Effects of SiC whiskers on the mechanical properties and microstructure of SiC ceramics by reactive sintering, Ceram. Int. 43 (2017) 6786-6790.

DOI: https://doi.org/10.1016/j.ceramint.2017.02.095

[2] R.X. Fischer, A. Gaedeköhler, J. Birkenstock, H. Schneider, Mullite and mullite-type crystal structures, Int. J. Mater. Res. 103 (2013) 402-407.

DOI: https://doi.org/10.3139/146.110713

[3] H. Schneider, R.X. Fischer, J. Schreuer, Mullite: Crystal Structure and Related Properties, J. Am. Ceram. Soc. 98 (2015) 2948–2967.

DOI: https://doi.org/10.1111/jace.13817

[4] H. Scheidera, J. Schreuerab, B. Hildmanna, Structure and properties of mullite-A review, J. Eur. Ceram. Soc. 2008 (28) 329-344.

[5] C.W. Li, C. Bian, Y. Han, C.A. Wang, Linan An, Mullite whisker reinforced porous anorthite ceramics with low thermal conductivity and high strength, J. Eur. Ceram. Soc. 36 (2016) 761-765.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2015.10.002

[6] C.L. Chen, X.T. Ge, Y. Wang, Y. Wang, W.H. Xing, Y.Z. Guo, Design and preparation of high permeability porous mullite support for membranes by in-situ reaction, Ceram. Int. 41 (2015) 8282-8287.

DOI: https://doi.org/10.1016/j.ceramint.2015.02.045

[7] L.F. Xu, X.A. Xi, W.L. Zhu, A.Z. Shui, W.B. Dai, Investigation on the influence factors for preparing mullite-whisker-structured porous ceramic, J. Alloy Compd. 649 (2015) 739-745.

[8] J.J. Cao, X.F. Dong, L.L. Li, Y.H. Dong, S. Hampshire, Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity, J. Eur. Ceram. Soc. 34 (2014) 3181-3194.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.04.011

[9] L. Zhu, Y.C. Dong, S. Hampshire, S. Cerneaux, L. Winnubst, Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance, J. Eur. Ceram. Soc. 35 (2015) 711-721.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.09.016

[10] S.H. Li, H.Y. Du, A.R. Guo, H. Xu, D. Yang, Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in flyash body, Ceram. Int. 38 (2012) 1027-1032.

DOI: https://doi.org/10.1016/j.ceramint.2011.08.026

[11] J.H. Zhang, H.D. Wu, S.X. Zhang, J.H. Yu, S.E. Hou, Preparation of mullite whiskers and their enhancement effect on ceramic matrix composites, J. Wuhan Univ. Technol. 28 (2013) 471-475.

DOI: https://doi.org/10.1007/s11595-013-0715-4

[12] K. Okada, N. Otasuka, Synthesis of mullite whiskers by vapour-phase reaction. J. Mater. Sci. Lett. 8 (1989) 1052-1054.

[13] K.H. Hua, X.A. Xi, L.F. Xu, K. Zhao, J.L. Wu, A.Z. Shui, Effects of AlF3 and MoO3 on properties of Mullite whisker reinforced porous ceramics fabricated from construction waste, Ceram. Int. 42 (2016) 17179-17184.

DOI: https://doi.org/10.1016/j.ceramint.2016.08.008