High Emissivity of Ca2+/Fe3+-Doped LaAlO3 Based Ceramic Materials


Article Preview

High emissive Ca2+/Fe3+-doped LaAlO3 based ceramic materials were prepared by flame spraying and controlled crystallization method. The phase composition, microstructure, infrared optical properties of Ca2+/Fe3+-doped LaAlO3 based ceramic powders were investigated. The physical mechanism for the significantly enhanced infrared emissivity of LaAlO3 by doping with Ca2+ and Fe3+ was analysized. This high emissive Ca2+/Fe3+-doped LaAlO3 based ceramic materials shows promising applications in high temperature thermal process field to enhance the radiative heat transfer and improve its thermal efficiency.



Edited by:

Junichi Hojo, Tohru Sekino, Jian Feng Yang, Hyung Sun Kim and Wen Bin Cao




J. Liu et al., "High Emissivity of Ca2+/Fe3+-Doped LaAlO3 Based Ceramic Materials", Materials Science Forum, Vol. 922, pp. 74-79, 2018

Online since:

May 2018




* - Corresponding Author

[1] X. He, Y. Li, L. Wang, et al. High emissivity coatings for high temperature application: progress and prospect, Thin Solid Films 517(17) (2009) 5120-5129.

DOI: https://doi.org/10.1016/j.tsf.2009.03.175

[2] I. Benkò, High infrared emissivity coating for energy conservation and protection of inner surfaces in furnaces, Int. J. Global Energy Issues 17(1-2) (2002) 60-67.

DOI: https://doi.org/10.1504/ijgei.2002.000931

[3] G.J. Heynderickx, M. Nozawa, High-emissivity coatings on reactor tubes and furnace walls in steam cracking furnaces, Chem. Eng. Sci. 59 (2004) 5657-5662.

DOI: https://doi.org/10.1016/j.ces.2004.07.075

[4] B.V. Cockeram, A.J. Mueller, The development and testing of emissivity enhancement coatings for themophotovoltaic (TPV) radiator applications, Thin Solid Films, 355 (1999) 17-25.

DOI: https://doi.org/10.1016/s0040-6090(99)00438-1

[5] D.B. Mahadik, S. Gujjar, et al. Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system, Appl. Surf. Sci. 299 (2014) 6-11.

DOI: https://doi.org/10.1016/j.apsusc.2014.01.159

[6] S.M. Wang, F.H. Kuang, Sol-gel preparation and infrared radiation property of boron-substituted cordierite glass-ceramics. J. Mater. Sci. Technol. 26(5) (2010) 445–448.

DOI: https://doi.org/10.1016/s1005-0302(10)60070-9

[7] X Tao, X. Xu, L. Guo, et al. MoSi2-borosilicate glass coating on fibrous ceramics prepared by in-situ reaction method for infrared radiation, Mater. Des. 103 (2016) 144-151.

DOI: https://doi.org/10.1016/j.matdes.2016.04.065

[8] J.P. Huang, et al. Enhanced spectral emissivity of CeO2 coating with cauliflower-like microstructure, Appl. Surf. Sci. 259 (2012) 301-305.

[9] J Huang, C Fan, G. Song, et al. Enhanced infrared emissivity of CeO2 coatings by La doping, Appl. Surf. Sci. 280 (2013) 605-609.

[10] X. Wu, H. Yu, H. Dong, L. Geng, Enhanced infrared radiation properties of CoFe2O4 by single Ce3+-doping with energy-efficient preparation, Ceram. Int. 40(4) (2014) 5905–5911.

DOI: https://doi.org/10.1016/j.ceramint.2013.11.035

[11] Y. Zhang, D.J. Wen, The effect of cation distribution on magnetic and infrared emission properties of RE3+, MnO2:CoZn (RE = La, Ce, Pr,Nd, Sm, Eu, Gd, Tb, and Dy) ferrite ceramics, J. Am. Ceram. Soc. 95(9) (2012) 2919-2927.

DOI: https://doi.org/10.1111/j.1551-2916.2012.05263.x

[12] H.Z. Liu, J.H. Ouyang, Z.G. Liu, Y.M. Wang, Thermo-optical properties of LaMAl11O19 (M = Mg, Mn, Fe) hexaaluminates for high-temperature thermal protection applications, J. Am. Ceram. Soc. 94 (10) (2011) 3195–3197.

DOI: https://doi.org/10.1111/j.1551-2916.2011.04761.x

[13] Z. Han, X. Li, J.Ye , et al. Significantly enhanced infrared emissivity of LaAlO3 by co-doping with Ca2+ and Cr3+ for energy-saving applications, J. Am. Ceram. Soc. 98 (2015) 2336-2339.

DOI: https://doi.org/10.1111/jace.13706

[14] Z. Han, J. Liu, X.W. Li, et al. Ca2+-Doped LaCrO3: A novel energy-saving material with high infrared emissivity, J. Am. Ceram. Soc. 97 (2014) 2705-2708.

DOI: https://doi.org/10.1111/jace.13161

[15] J.K. Ye, C.H. Bu, et al. Flame-spraying synthesis and infrared emission property of Ca2+/Cr3+ doped LaAlO3 microspheres, J. Eur. Ceram. Soc. 35 (2015) 3111-3118.

[16] P.C. Michael, J.U. Trefny, B Yarar, Thermal transport properties of single crystal lanthanum aluminate, J. Appl. Phys. 72(1) (1992) 107-109.

DOI: https://doi.org/10.1063/1.352166

[17] R. Vassen, X. Cao, F. Tietz, et al. Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc. 83(8) (2000) 2023-(2028).

DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01506.x

[18] S.M. Lakiza, L.M. Lopato, Phase diagram of the Al2O3–ZrO2–La2O3 system, J. Eur. Ceram. Soc. 25(8) (2005) 1373-1380.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.01.014

[19] G. He, L. Mei, L. Wang, et al. Synthesis and luminescence properties of nano-/microstructured Y3Al5O12: Ce3+ microspheres by controlled glass crystallization, Cryst. Growth & Des. 11(12) (2011) 5355-5361.

DOI: https://doi.org/10.1021/cg200939p

[20] G. He, Y. Li, et al. Preparation of Ce-doped (Y, Gd)3Al5O12 nanoceramics by sintering and crystallization of glass microspheres, Mater. Res. Bull. 66 (2015) 45-50.

Fetching data from Crossref.
This may take some time to load.